Nursing Case Study for Pediatric Asthma

Start a free trial to unlock videos, outlines, cheatsheets, and quizzes.


Included In This Lesson

Study tools.

Anthony is a 6-yr-old male patient brought to the pediatric ER with a history of asthma since he came home from the NICU as an infant. He lives with his parents, Bob and Josh, who adopted him after fostering him from age 4 months. They have tried the usual nebulizer treatments but Anthony is not responding as usual, so they brought him for evaluation.

Initial assessment in triage reveals both inspiratory and expiratory wheezes, dyspnea, tachypnea, diaphoresis, and retractions.

BP 70/40 mmHg SpO2 93% on room air HR 131 bpm RR 32bpm at rest Temp 38.3°C

What physiologic issue is Anthony suffering from based on the assessment findings?

  • Respiratory distress is evidenced by both vital signs and physical assessment findings. His RR and HR are high. He is also sweating and having retractions which may indicate he is working hard to try to establish oxygen exchange.

What signs and symptoms might occur that would show worsening of his condition?

  • Skin color changes (i.e. blue or bluish around the mouth or even inside the mouth, blue nail beds, gray or pale compared to usual)
  • Grunting on exhalation (this indicates the body is trying to keep air in the lungs)
  • Stridor (this is heard in the upper airway and can be an ominous sign)
  • Changes in the level of consciousness (becoming lethargic or drowsy)

Anthony is pale but not gray. His lips do indicate a very faint bluish tinge. He can speak but it appears difficult.

What medications might the nurse expect the provider to order?

  • Short-acting beta-agonists (SABAs)
  • Racemic albuterol – A racemic mixture of albuterol (salbutamol) is the primary SABA used for quick relief of acute asthma symptoms and exacerbations.
  • Levalbuterol – Levalbuterol (Levosalbutamol), the R-enantiomer, is the active isomer of racemic albuterol that confers the bronchodilator effects. Levalbuterol is approved in the United States for the treatment of bronchospasm in children ≥4 years of age via hydrofluoroalkane (HFA) metered-dose inhaler (MDI) and ≥6 years of age via solution for nebulizer

What side effects might occur from the medications ordered?

  • “The most common side effects are tremor, increased heart rate, and palpitations” Anthony may report feeling jittery due to the activation of beta receptors.

After administration of racemic albuterol, Anthony now has a RR of 22 and O2 saturation of 95% on room air. However, the provider decides to admit him to the inpatient pediatric observation unit. His parents ask if there are ways to keep him from continually being admitted to the hospital.

What are some education topics to bring up to Anthony’s parents?

  • Controlling asthma triggers — The factors that set off or worsen asthma symptoms are called “triggers.” Identifying and avoiding asthma triggers is essential to keeping symptoms under control. Common asthma triggers generally fall into several categories:
  • Allergens (including dust mites, pollen, mold, cockroaches, mice, cats, and dogs)
  • Respiratory infections, such as the common cold or the flu
  • Irritants (such as tobacco smoke, chemicals, and strong odors or fumes)
  • Exercise or other physical activity

What does the nurse understand about this medication?

  • Systemic corticosteroids are an essential treatment option for many disease states, especially asthma. These medications reduce the length and severity of asthma exacerbations and reduce the need for hospitalization or ED visits. It is important for asthma patients to receive prednisolone as soon as possible after the onset of symptoms that are bronchodilator-unresponsive to attain these benefits.
  • Although usually prescribed for a 5- to 7-day period, oral corticosteroids are not without adverse effects. The most common adverse effects are the same for the majority of oral corticosteroids and include increased appetite, weight gain, flushed face.
  • Increased risk of infections, especially with common bacterial, viral and fungal microorganisms. Thinning bones (osteoporosis) and fractures happen over time, be mindful this may cause problems in an energetic child. Suppressed adrenal gland hormone production may result in a variety of signs and symptoms, including severe fatigue, loss of appetite, nausea and muscle weakness.

Anthony sleeps during the night shift and the next day, his pediatrician makes rounds and discusses a change in the severity rating of Anthony’s asthma.

What does the nurse know about asthma severity and how it is determined?

  • Asthma severity is the intrinsic intensity of the disease. Assessment of asthma severity is made on the basis of components of current impairment and future risk. The severity is determined by the most severe category measured

Bob and Josh are interested in meeting with respiratory therapy for assistance with inhalers. They say that Anthony has trouble using inhaler devices.

Inviting respiratory therapy to provide parent teaching is an example of what? How can this department help the family?

  • Interdisciplinary team collaboration.
  • Teaching about medications, proper inhaler (or other equipment) use, thorough explanation of peak expiratory flow (PEF) measuring, ways to help control RR.

After lunch, Anthony is ready to be discharged. His parents verbalize gratitude to the staff and thank the team for helping with education.

What can the nurse help Bob and Josh start to establish to try to help them with Anthony’s condition?

  • Setting goals and planning. Preparing for an action plan (“Asthma ‘action plan’ is a form or document that your child’s provider can help you put together; it includes instructions about how to monitor symptoms and what to do when they happen. Asthma action plans are available for children up to five years old, for children five years and older and adults and for school. An action plan can tell you when to add or increase medications, when to call your child’s provider, and when to get immediate emergency help. This can help you know what to do in the event of an asthma attack. Different people can have different action plans, and your child’s action plan will likely change over time.”) 

Create Your Free Account

Unlock FREE access to nursing videos to pass your tests and improve your grades

I agree to the  Terms of Use   and  Billing Terms  

Sign up with

Already have an account? 


Nursing case studies.

Jon Haws

This nursing case study course is designed to help nursing students build critical thinking.  Each case study was written by experienced nurses with first hand knowledge of the “real-world” disease process.  To help you increase your nursing clinical judgement (critical thinking), each unfolding nursing case study includes answers laid out by Blooms Taxonomy  to help you see that you are progressing to clinical analysis.We encourage you to read the case study and really through the “critical thinking checks” as this is where the real learning occurs.  If you get tripped up by a specific question, no worries, just dig into an associated lesson on the topic and reinforce your understanding.  In the end, that is what nursing case studies are all about – growing in your clinical judgement.

Nursing Case Studies Introduction

Cardiac nursing case studies.

  • 6 Questions
  • 7 Questions
  • 5 Questions
  • 4 Questions

GI/GU Nursing Case Studies

  • 2 Questions
  • 8 Questions

Obstetrics Nursing Case Studies

Respiratory nursing case studies.

  • 10 Questions

Pediatrics Nursing Case Studies

  • 3 Questions
  • 12 Questions

Neuro Nursing Case Studies

Mental health nursing case studies.

  • 9 Questions

Metabolic/Endocrine Nursing Case Studies

Other nursing case studies.

  • Case report
  • Open Access
  • Published: 21 February 2018

Pediatric severe asthma: a case series report and perspectives on anti-IgE treatment

  • Virginia Mirra 1 ,
  • Silvia Montella 1 &
  • Francesca Santamaria 1  

BMC Pediatrics volume  18 , Article number:  73 ( 2018 ) Cite this article

10k Accesses

11 Citations

1 Altmetric

Metrics details

The primary goal of asthma management is to achieve disease control for reducing the risk of future exacerbations and progressive loss of lung function. Asthma not responding to treatment may result in significant morbidity. In many children with uncontrolled symptoms, the diagnosis of asthma may be wrong or adherence to treatment may be poor. It is then crucial to distinguish these cases from the truly “severe therapy-resistant” asthmatics by a proper filtering process. Herein we report on four cases diagnosed as difficult asthma, detail the workup that resulted in the ultimate diagnosis, and provide the process that led to the prescription of omalizumab.

Case presentation

All children had been initially referred because of asthma not responding to long-term treatment with high-dose inhaled steroids, long-acting β 2 -agonists and leukotriene receptor antagonists. Definitive diagnosis was severe asthma. Three out four patients were treated with omalizumab, which improved asthma control and patients’ quality of life. We reviewed the current literature on the diagnostic approach to the disease and on the comorbidities associated with difficult asthma and presented the perspectives on omalizumab treatment in children and adolescents. Based on the evidence from the literature review, we also proposed an algorithm for the diagnosis of pediatric difficult-to-treat and severe asthma.


The management of asthma is becoming much more patient-specific, as more and more is learned about the biology behind the development and progression of asthma. The addition of omalizumab, the first targeted biological treatment approved for asthma, has led to renewed optimism in the management of children and adolescents with atopic severe asthma.

Peer Review reports

Children with poor asthma control have an increased risk of severe exacerbations and progressive loss of lung function, which results in the relevant use of health resources and impaired quality of life (QoL) [ 1 ]. Therefore, the primary goal of asthma management at all ages is to achieve disease control [ 2 , 3 , 4 ].

According to recent international guidelines, patients with uncontrolled asthma require a prolonged maintenance treatment with high-dose inhaled corticosteroids (ICS) in association with a long-acting β 2 -agonist (LABA) plus oral leukotriene receptor antagonist (LTRA) (Table  1 ) [ 5 ].

Nevertheless, in the presence of persistent lack of control, reversible factors such as adherence to treatment or inhalation technique should be first checked for, and diseases that can masquerade as asthma should be promptly excluded. Finally, additional strategies, in particular anti-immunoglobulin E (anti-IgE) treatment (omalizumab), are suggested for patients with moderate or severe allergic asthma that remains uncontrolled in Step 4 [ 5 ].

Herein, we reviewed the demographics, clinical presentation and treatment of four patients with uncontrolled severe asthma from our institution in order to explain why we decided to prescribe omalizumab. We also provided a review of the current literature that focuses on recent advances in the diagnosis of pediatric difficult asthma and the associated comorbidities, and summarizes the perspectives on anti-IgE treatment in children and adolescents.

Case presentations

Table  2 summarizes the clinical characteristics and the triggers/comorbidities of the cases at referral to our Institution. Unfortunately, data on psychological factors, sleep apnea, and hyperventilation syndrome were not available in any case. Clinical, lung function and airway inflammation findings at baseline and after 12 months of follow-up are reported in Table  3 . In the description of our cases, we used the terminology recommended by the ERS/ATS guidelines on severe asthma [ 6 ].

A full-term male had severe preschool wheezing and, since age 3, recurrent, severe asthma exacerbations with frequent hospital admissions. At age 11, severe asthma was diagnosed. Sensitization to multiple inhalant allergens (i.e., house dust mites, dog dander, Graminaceae pollen mix, and Parietaria judaica ) and high serum IgE levels (1548 KU/l) were found. Body mass index (BMI) was within normal range. Combined treatment with increasing doses of ICS (fluticasone, up to 1000 μg/day) in association with LABA (salmeterol, 100 μg/day) plus LTRA (montelukast, 5 mg/day) has been administered over 2 years. Nevertheless, persistent symptoms and monthly hospital admissions due to asthma exacerbations despite correct inhaler technique and good adherence were reported. Parents refused to perform any test to exclude gastroesophageal reflux (GER) as comorbidity [ 6 ]. However, an ex-juvantibus 2-month-course with omeprazole was added to asthma treatment [ 7 ], but poor control persisted. Anterior rhinoscopy revealed rhinosinusitis that was treated with nasal steroids for six months [ 8 ], but asthma symptoms were unmodified. Treatment with omalizumab was added at age 12. Reduced hospital admissions for asthma exacerbations, no further need for systemic steroids, and improved QoL score (from 2.0 up to 6.7 out of a maximum of 7 points) were documented over the following months. Unfortunately, after one year of treatment, adherence to omalizumab decreased because of family complaints, and eventually parents withdrew their informed consent and discontinued omalizumab. Currently, by age 17, treatment includes inhaled salmeterol/fluticasone (100 μg/500 μg∙day -1 , respectively) plus oral montelukast (10 mg/day). Satisfactory symptom control is reported, with no asthma exacerbations.

A full-term male, who had a recurrent severe preschool wheezing, at 6 years of age developed exercise-induced asthma. At age 10, severe asthma was diagnosed. High serum IgE levels (1300 KU/l) and skin prick tests positive to house dust mites were found. Despite a 3-year treatment with progressively increasing doses of inhaled fluticasone (up to 1000 μg/day) combined with salmeterol (100 μg/day) and oral montelukast (5 mg/day), monthly hospital admissions with systemic steroids use were reported. At age 13, a 24-h esophageal impedance/pH study demonstrated the presence of acid and non-acid GER [ 7 ]. Esomeprazole was added to asthma medications, but with an incomplete clinical benefit for respiratory symptoms. Esomeprazole was withdrawn after 3 months, and parents refused to re-test for GER. As respiratory symptoms persisted uncontrolled despite treatment, severe asthma was definitively diagnosed [ 6 ]. BMI was within the normal range and anterior rhinoscopy excluded rhinosinusitis. Inhaler technique and adherence were good; thus we considered the anti-IgE treatment option [ 9 ]. Subcutaneous omalizumab was started, with fast improvement of both symptoms and QoL score (from 3.9 up to 6.5). Seventeen months later, the dose of ICS had been gradually tapered and oral montelukast definitely discontinued. Currently, at age 14, treatment includes the combined administration of bimonthly subcutaneous omalizumab and of daily inhaled salmeterol/fluticasone (50 μg/100 μg∙day - 1 , respectively). Asthma control is satisfactory and no side effects are reported. Omalizumab has been continuously administered for 2.6 years and is still ongoing.

A full-term male had severe preschool wheezing and, since age 3, recurrent, severe asthma exacerbations with acute respiratory failure that frequently required intensive care unit (ICU) admission. At age 6, sensitization to multiple perennial inhalant (i.e., house dust mites, dog and cat danders, Alternaria alternata , Graminaceae pollen mix, Artemisia vulgaris , Parietaria judaica , and Olea europaea pollen) and food allergens (i.e., egg, milk, and peanut) was diagnosed. Serum IgE levels were 2219 KU/l. Weight and height were appropriate for age and sex. The patient has been treated over 3 years with a combined scheme of high-dose inhaled fluticasone (up to 1000 μg/day) plus salmeterol (100 μg/day) and oral montelukast (5 mg/day), with correct inhaler technique and good adherence. Despite this, monthly hospital admissions with systemic steroids use were recorded. Rhinosinusitis and GER were excluded on the basis of appropriate testing; thus treatment with omalizumab was started when the patient was 9 years old. At age 11, adherence to treatment is satisfactory, with no side effects. More importantly, reduced hospital admissions for asthma exacerbations, no further need for systemic steroids, and improved QoL score (from 6.4 to 6.8) were reported. Finally, progressive step-down of anti-asthma treatment was started, and at present (by 11.5 years) inhaled fluticasone (200 μg/day) plus bimonthly subcutaneous omalizumab provide good control of symptoms. Omalizumab has been continuously administered for 2.6 years and is still ongoing.

A full-term male had severe preschool wheezing and, since age 4, recurrent, severe asthma exacerbations with frequent hospital admissions. At age 8, multiple perennial inhalants and food sensitization (i.e., house dust mites, dog dander, Graminaceae pollen mix, Olea europaea pollen, tomatoes, beans, shrimps, and peas) and high serum IgE levels (1166 KU/l) were found. The patient has been treated over 5 years with inhaled fluticasone (up to 1000 μg/day) in association with salmeterol (100 μg/day) and oral montelukast (5 mg/day). Despite this, monthly hospital admissions with systemic steroids need were recorded. After checking the inhaler technique and adherence to treatment, comorbidities including obesity, rhinosinusitis and GER were excluded. Omalizumab was proposed, but parents refused it. By 13.6 years, despite a treatment including the association of inhaled salmeterol/fluticasone (100 μg/1000 μg∙day − 1 , respectively) plus oral montelukast (10 mg/day), monthly exacerbations requiring systemic steroids are reported.

Discussion and conclusions

Most children and adolescents with asthma respond well to inhaled short-acting beta 2 -agonists (SABA) on demand if symptoms are intermittent, or to low dose controller drugs plus as-needed SABA if the risk of exacerbations increases [ 1 ]. Nevertheless, a proportion of patients is referred to specialists because this strategy is not working and asthma is persistently uncontrolled [ 4 ]. For these children, assessment is primarily aimed at investigating the reasons for poor control. Indeed, when the child is initially referred, before the label of “severe, therapy-resistant asthma” (i.e., not responding to treatment even when factors as exposure to allergens and tobacco smoke have been considered) is assigned, three main categories need to be identified: 1) “not asthma at all”, in which response to treatment is suboptimal because the diagnosis is wrong; 2) “asthma plus ”, when asthma is mild but exacerbated by one or more comorbidities; and 3) “difficult-to-treat asthma”, when asthma is uncontrolled because of potentially reversible factors [ 10 ].

The reported cases highlight some aspects of the disease process that may expand the diagnosis and improve patients’ care. At our institution, the severe asthma program includes a multidisciplinary approach with consultations by gastroenterologists as well as ear, nose and throat experts. Recently, sleep medicine experts joined this multidisciplinary team; thus, unfortunately, sleep-disordered breathing (SDB) could not be excluded at the time of our patients’ assessment. Inhalation technique is periodically evaluated by nurses or doctors in each patient. Unfortunately, in Italy an individual prescription database is not available and thus we cannot assess patients’ use of medication. In two cases, the filtering process eventually identified GER and rhinosinusitis, but poor control of asthma persisted even after comorbidities were treated. In all subjects, inhaler skills, treatment adherence, and environmental exposure to indoor/outdoor allergens as well as to second- and third-hand smoke were excluded as cause of lack of control. Eventually, three out of four patients started anti-IgE treatment; asthma control was obtained and maintenance drugs were progressively reduced. In the case that refused omalizumab therapy, pulmonary function, clinical features and controller treatment including high-dose ICS were unchanged.

Previous studies have highlighted an association between increasing asthma severity in children and reduced QoL [ 11 , 12 , 13 ]. Uncontrolled asthma symptoms not only affect children physically, but can impair them socially, emotionally, and educationally [ 13 ]. In line with previous observations, 3 out 4 of our cases had poor QoL, assessed by a standardized questionnaire [ 14 ]. It is well known that improving QoL in difficult asthma is not an easy task, despite a variety of treatments aimed at achieving control [ 12 ], and much more remains to be done to address the problem. Nevertheless, 2 of our 3 cases showed a remarkable improvement of QoL after one year of treatment with omalizumab.

Reduction in forced expiratory volume in the first second (FEV 1 ) is often used to define childhood asthma severity in treatment guidelines and clinical studies [ 5 , 11 , 15 ]. Nevertheless, children with severe asthma often have a normal FEV 1 that does not improve after bronchodilators, indicating that spirometry may be a poor predictor of asthma severity in childhood [ 6 , 16 , 17 ]. Actually, children with a normal FEV 1 , both before and after β 2 -agonist, may show a bronchodilator response in terms of forced expiratory flow between 25% and 75% (FEF 25–75 ) [ 18 ]. However, the utility of FEF 25–75 in the assessment or treatment of severe asthma is currently unknown. Interestingly, all the reported cases showed normal or slightly reduced values of FEV 1 but severe impairment of FEF 25–75 . Two cases showed a bronchodilator response in terms of FEV 1 (subjects 3 and 4), while 3 patients had a significant increase of FEF 25–75 (cases 1, 3 and 4). Unfortunately, we could not provide the results of bronchodilator response during or after the treatment with omalizumab in any case.

Available literature on the diagnostic approach to difficult asthma in children offers a number of reviews which basically summarize the steps needed to fill the gap between a generic diagnosis of “difficult asthma” and more specific labels (i.e., “severe” asthma, “difficult-to-treat” asthma, or even different diagnoses) [ 3 , 5 , 6 , 8 , 10 , 19 , 20 , 21 ]. So far, few original articles and case reports have been published, probably due to the peculiarity of the issue, which makes retrospective discussion of cases easier than the design of a prospective clinical study [ 4 , 22 , 23 , 24 , 25 , 26 ]. Available knowledge mainly derives from the experience of specialized centers.

The evaluation of a child referred for uncontrolled asthma should start with a careful history focused on typical respiratory symptoms and on the definition of possible triggers. In the “severe asthma” process, it is crucial for clinicians to maintain a high degree of skepticism about the ultimate diagnosis, particularly in the presence of relevant discrepancies between history, physical features and lung function, as many conditions may be misdiagnosed as asthma. In order to simplify this process, herein we propose an algorithm for the diagnosis of difficult-to-treat and severe asthma (Fig.  1 ). Confirmation of the diagnosis through a detailed clinical and laboratory re-evaluation is important because in 12–50% of cases assumed to have severe asthma this might not be the correct diagnosis [ 10 ]. Several documents have indicated the main steps of the process that should be followed in children with uncontrolled asthma [ 3 , 8 , 10 ]. The translation of these procedures into real life practice may deeply change from one subject to another due to the variability of individual patients’ history and clinical features, which will often lead the diagnostic investigations towards the most likely reason for uncontrolled asthma. For children with apparently severe asthma, the first step is to confirm the diagnosis and, before proceeding to broader investigations, to verify that the poor control is not simply determined by poor adherence to treatment, inadequate inhaler skills and/or environmental exposure to triggers. A nurse-led assessment, including a home visit, despite not being applicable in all settings, may be useful for identifying potentially modifiable factors in uncontrolled pediatric asthma [ 27 ].

A practical algorithm for the diagnosis of difficult-to-treat and severe asthma. ICS, inhaled corticosteroids; OCS, oral corticosteroids

A number of comorbidities have been increasingly recognized as factors that may impact asthma clinical expression and control in childhood [ 10 , 28 ]. Children with uncontrolled disease should be investigated for GER, rhinosinusitis, dysfunctional breathing and/or vocal cord dysfunction, obstructive sleep apnea, obesity, psychological factors, smoke exposure, hormonal influences, and ongoing drugs [ 3 , 6 , 8 , 20 ]. Indeed, the exact role played by comorbidities in pediatric asthma control is still debated [ 28 ]. The most impressive example is GER. Several pediatric documents recommend assessing for GER because reflux may be a contributing factor to problematic or difficult asthma [ 7 , 29 ]. Nevertheless, GER treatment might not be effective for severe asthma [ 30 , 31 ], as confirmed by current cases 1 and 2. There is an established evidence that chronic rhinosinusitis is associated with more severe asthma in children [ 32 , 33 , 34 ]. Therefore, examination of upper airways and ad hoc treatment if rhinosinusitis is evident are recommended in children with severe asthma [ 3 , 8 , 35 ]. However, intranasal steroids for rhinitis resulted in a small reduction of asthma risk in school-aged children [ 36 ], and actual placebo-controlled studies on the effect of treatment of rhinosinusitis on asthma control in children are lacking [ 10 , 37 ].

Dysfunctional breathing, including hyperventilation and vocal cord dysfunction, is associated with poorer asthma control in children [ 8 , 10 , 38 , 39 ]. Unfortunately, there is scarce literature on the effect of its treatment on the control of severe asthma in children [ 40 ]. SDB ranging from primary snoring to obstructive sleep apnea syndrome is very common in children [ 41 ], and an increased prevalence of SDB together with increasing asthma severity has been reported [ 42 ]. Interestingly, GER may also be worsened by recurrent episodes of upper airway obstruction associated with SDB, and this may further trigger bronchial obstruction. Asthma guidelines recommend the assessment of SDB through nocturnal polysomnography in poorly controlled asthmatics, particularly if they are also obese [ 5 ]. There are no studies examining whether pediatric asthma improves after SDB has been treated, for example, with nasal steroids, adenotonsillectomy, continuous positive airway pressure or weight reduction if the child is also obese [ 43 ]. The parallel increase in obesity and asthma suggests that the two conditions are linked and that they can aggravate each other [ 44 , 45 ], even though the exact mechanisms that underlie this association remain unclear [ 46 ]. Indeed, other coexisting comorbidities such as SDB or GER may play a confounding role in the development of the interactions between obesity and the airways [ 47 , 48 ]. Obesity is associated with increased markers of inflammation in serum and adipose tissue and yet decreased airway inflammation in obese people with asthma [ 49 ]. Several interventions, including behavioral and weight reduction programs or bariatric surgery, may result in improved asthma control, quality of life and lung function in adult obese asthmatics [ 50 ]. Although reports of adolescent bariatric surgery demonstrate a significant body weight decrease, this approach is not widely available and there are no published reports on its effect on pediatric severe asthma control [ 51 ]. Finally, although it is still unclear whether food allergy is causative or shares a common pathway with difficult asthma, it might explain the loss of asthma control at least in some children and thus be considered as a comorbid condition [ 10 , 16 , 52 ].

In conclusion, establishing the impact of comorbidities on asthma control may be cumbersome, and an ex-juvantibus treatment is sometimes necessary to assess their role. Comorbid conditions can also worsen each other, and symptoms arising from some of them may mimic asthma [ 6 ]. Although the ability to improve pediatric severe asthma by treating comorbidities remains unconfirmed, they should be treated appropriately [ 9 ].

The vast majority of asthmatic children exhibit a mild or at most a moderate disease that can be fully controlled with low-to-medium dose ICS associated or not with other controllers [ 5 , 6 ]. However, a subset of asthmatics remains difficult-to-treat [ 5 , 6 ]. With the advent of biologics, these severe steroid-dependent asthmatics have alternative options for treatment, as steroid-related adverse events are common in severe asthma [ 53 ]. Omalizumab, an anti-IgE monoclonal antibody, is the only biologic therapy recommended in children with moderate-to-severe asthma by the recent guidelines [ 5 , 6 ]. In Italy, this treatment is fully covered by the National Health System. Therefore, there is no influence by any funding on treatment decisions. It was approved by the US (Food and Drug Administration) in 2003 and by the European Union (European Medicines Agency) in 2005 as an add-on treatment for patients aged > 12 years with severe persistent allergic asthma and who have a positive skin test or in-vitro reactivity to a perennial aeroallergen, FEV 1  < 80% predicted, frequent daytime symptoms or nighttime awakenings, and multiple documented severe asthma exacerbations despite daily ICS plus a LABA [ 54 , 55 ]. In 2009, it also received approval in Europe for treating patients aged 6–12 years. Figure  2 illustrates current indications for treatment with omalizumab in children and adolescents with severe asthma.

Indications for omalizumab in children and adolescents with severe asthma

IgE antibodies, Th 2 -derived cytokines and eosinophils play a major role in the development of chronic airway inflammation in asthmatic subjects [ 56 ]. Once released from plasma cells, IgE binds principally to the high-affinity IgE receptor (FcεRI) on mast cells, triggering different effector responses, including the release of mediators leading to allergic inflammatory reactions [ 56 ]. The activation of the allergic cascade by IgE, under constant allergen stimulation, leads to the establishment of chronic allergic inflammation in the airways of asthmatic patients, with IgE being a key element of the vicious circle that maintains it. Cytokines produced during the late phase and subsequent chronic inflammation stage have been directly associated with the induction of airway remodelling, indirectly implicating IgE in the process [ 56 ]. At present, omalizumab is the only commercially available recombinant humanized anti-IgE monoclonal antibody that specifically binds serum free IgE at its CH 3 domain, in the proximity of the binding site for FcεRI, thus preventing IgE from interacting with its receptor on mast cells, basophils, antigen-presenting cells and other inflammatory cells [ 57 ]. The rapid reduction of free IgE levels leads to a downregulation of the FcεRI expression on inflammatory cells and an interruption of the allergic cascade, which results in the reduction of peripheral and bronchial tissue eosinophilia and of levels of granulocyte macrophage colony stimulating factor, interleukin (IL)-2, IL-4, IL-5, and IL-13 [ 58 ]. Moreover, basophils have a relevant role in the initiation and progression of allergic inflammation, suggesting that they may represent a viable therapeutic target. Indeed, in children with severe asthma, it has been reported that omalizumab therapy is associated with a significant reduction in circulating basophil numbers, a finding that is concurrent with improved clinical outcomes [ 59 ]. This finding supports a mechanistic link between IgE levels and circulating basophil populations, and may provide new insights into one mechanism by which omalizumab improves asthma symptoms.

Several clinical controlled and real-life studies of adults with severe, inadequately controlled allergic asthma have demonstrated the efficacy and safety of omalizumab in reducing asthma-related symptoms, corticosteroid use, exacerbation rates, and healthcare resource utilization, and in improving QoL and lung function [ 60 , 61 , 62 , 63 ]. Fewer studies have been published in children. In two double-blind, randomized, placebo-controlled trials (RCTs) of children aged 6 to 12 years with moderate-to-severe allergic asthma, treatment with omalizumab reduced the requirement for ICS and protected against disease exacerbations, but there was little change in asthma symptom scores or spirometry [ 9 , 64 ]. These findings were confirmed and extended in older children [ 65 , 66 , 67 ].

The results of the ICATA study, a multicenter RCT of 419 inner-city children, adolescents and young adults with persistent allergic asthma, showed that, compared to placebo, omalizumab reduces the number of days with asthma symptoms and the proportion of participants with at least one exacerbation by approximately 25% and 19%, respectively ( p  < 0.001), thus reducing the need for asthmatic symptom controllers [ 68 ]. Another multicenter RCT of inner-city children and adolescents showed that the addition of omalizumab to ongoing guidelines-based care before patients return to school reduces fall asthma exacerbations (odds ratio, 0.48), particularly in subjects with a recent exacerbation [ 69 ]. Moreover, in a real-life study of 104 children and adolescents with severe allergic refractory asthma followed over 1 year, treatment with omalizumab resulted in good asthma control in 67% of the cases ( p  < 0.001), while FEV 1 improved by 4.9% ( p  = 0.02) and exacerbation rates and healthcare utilisation decreased approximately by 30% ( p  < 0.001) [ 70 ]. The same authors also showed that, after two years of treatment, exacerbation rate and healthcare utilisation were further decreased by 83% and 100%, respectively, while level of asthma control, steroid use and lung function remained unchanged [ 71 ].

A systematic review of pediatric RCTs pooled the data of 1381 children and adolescents with moderate-to-severe allergic asthma in order to establish the efficacy of omalizumab as an add-on therapy [ 72 ]. During the stable-steroid phase, omalizumab decreased the number of patients with at least one exacerbation (risk ratio, 0.69; p  < 0.001), the mean number of asthma exacerbations per patient (risk ratio, 0.35; p  < 0.001), and the asthma symptom score (mean difference, 0.12; p  = 0.005) when compared to placebo. During the steroid reduction phase, omalizumab further reduced the number of patients with at least one exacerbation (risk ratio, 0.48; p  < 0.001) and the mean number of asthma exacerbations per patient (mean difference, 0.12; p  < 0.05).

Given the cost of omalizumab, many authors have argued for the importance of identifying specific asthma populations who will have significant benefit from it [ 68 , 73 , 74 ]. In the ICATA study, baseline predictors of good response to treatment were sensitization and exposure to cockroach allergen, sensitization to house dust mite allergens, a serum IgE level of more than 100 IU per milliliter, a BMI of 25 or more, and a history of at least one unscheduled medical visit in the previous year [ 68 ].

Several studies have assessed the long-term safety of omalizumab in children and adults. A pooled analysis of 67 RCTs conducted over 2 decades on 4254 children and adults treated with omalizumab showed no association between omalizumab treatment and risk of malignancy [ 75 ]. In an RCT evaluating 225 school-aged children, omalizumab was well tolerated, there were no serious adverse events, and the frequency and types of all adverse events were similar to the placebo group [ 9 ]. These results have been further confirmed by a recent systematic review of RCTs that concluded that treatment with omalizumab does not result in increased risk of malignancy or hypersensitivity reactions [ 72 ].

While the rationale for long-term treatment with omalizumab is supported by pharmacokinetic-pharmacodynamic models [ 76 ], the duration of treatment is still under discussion. Results from published studies suggest that omalizumab should be continued for > 1 year [ 77 , 78 ]. In a retrospective study of adults and children with uncontrolled severe asthma treated with omalizumab, the response to treatment was ‘excellent’ in 52.5% of patients, particularly in the subgroup of children aged 6 to 11 years [ 77 ]. After the discontinuation of treatment, loss of asthma control was documented in 69.2% of the patients who had received omalizumab for < 1 year, 59.1% of the subjects treated for 1–2 years, and 46.1% of the cases treated for > 2 years. Time to loss of control was shorter in younger children and longer in patients with an ‘excellent’ response compared with patients with a ‘good’ response. No early loss of control (within 6 months) was observed among patients with > 3.5 years of continuous treatment with omalizumab. Finally, 20% of patients in whom omalizumab was re-prescribed because of loss of control did not respond to the treatment anymore [ 77 ]. Despite these encouraging findings, the impact of omalizumab on the natural history of severe asthma in children deserves to be further investigated by long-term studies that will also define the criteria and timing for discontinuing the treatment.

It is well known that asthma pharmacotherapy is effective in controlling symptoms and bronchial inflammation, but cannot affect the underlying immune response, thus leading to the possibility of symptom reappearance after its discontinuation [ 79 ]. In this scenario, allergen-specific immunotherapy (AIT) has been proposed as the only therapeutic method that can modulate the underlying immune pathophysiology in allergic asthma [ 80 ].

AIT is currently indicated in children and adults with mild-moderate allergic asthma that is completely or partially controlled by pharmacotherapy and with the evidence of a clear relationship between symptoms and exposure to a specific allergen [ 81 , 82 , 83 , 84 ]. However, according to recent guidelines, the efficacy of AIT in asthmatic subjects is limited, and its potential benefits must be weighed against the risk of side effects and the inconvenience and costs of the prolonged therapy [ 5 ]. Moreover, severe or uncontrolled asthma (regardless of its severity) is a major independent risk factor for non-fatal or even fatal adverse reactions, thus representing a contraindication for AIT [ 85 , 86 , 87 ]. Finally, children with severe asthma are often sensitized to multiple allergens, thus making AIT prescription even more complicated [ 88 ].

In subjects with uncontrolled and/or severe allergic asthma, a combination of omalizumab and AIT has been proposed [ 88 ]. Surprisingly, only a few studies have addressed this issue [ 89 , 90 , 91 , 92 ]. However, pre-treatment with omalizumab seems to improve the efficacy and tolerability of subcutaneous AIT in children and adults with severe allergic asthma both during omalizumab treatment and after its discontinuation [ 89 , 91 , 92 ]. Omalizumab has also been successfully used as a supplementary treatment to AIT in order to improve asthma control in children ≥6 years with severe persistent allergic asthma [ 90 ]. Given the scarcity of studies on AIT plus omalizumab in children with severe allergic asthma, further research is warranted to assess risks and benefits of the combined treatment.

Children with severe asthma require a detailed and individualized approach including re-assessment for differential diagnoses, comorbidities and contributory factors, environmental triggers, lung function and inflammation, adherence and response to therapy, and QoL. Treatment of pediatric severe asthma still relies on the maximal optimal use of corticosteroids, bronchodilators and other controllers recommended for moderate-to-severe disease. However, the management of asthma is becoming much more patient-specific, as more and more is learned about the biology behind the development and progression of asthma.

In the current paper, we described the characteristics of four children with severe asthma in whom omalizumab was prescribed. A review of the relevant literature on the topic was also performed. Finally, we provided an algorithm for the diagnosis of difficult-to-treat and severe asthma in children and adolescents, based on the evidence from the literature review. As all algorithms, it is not meant to replace clinical judgment, but it should drive physicians to adopt a systematic approach towards difficult and severe asthma and provide a useful guide to the clinician.

The addition of omalizumab, the first targeted biological treatment approved for asthma, has led to renewed optimism of outcome improvements in patients with allergic severe asthma. As severe asthma is a heterogeneous condition consisting of different phenotypes, the future of asthma management will likely involve phenotypic and potentially even genotypic characterization in selected cases in order to determine appropriate therapy and thus to provide the highest possible benefit, especially if specific responder phenotypes can be identified and selected for this highly specific treatment.


Anti-immunoglobulin E

Body mass index

IgE receptor

Forced expiratory flow between 25% and 75%

Forced expiratory volume in the first second

Gastroesophageal reflux

Inhaled corticosteroids

Intensive care unit


Long-acting β 2 -agonist

Oral leukotriene receptor antagonist

Quality of life

Randomized controlled trials

Short-acting β 2 -agonists

Sleep-disordered breathing

O'Byrne PM, Pedersen S, Schatz M, Thoren A, Ekholm E, Carlsson LG, et al. The poorly explored impact of uncontrolled asthma. Chest. 2013;143:511–3.

Article   PubMed   Google Scholar  

National Asthma Education and Prevention Program. Expert panel report 3 (EPR-3): guidelines for the diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol. 2007;120:S94–8.

Article   Google Scholar  

Hedlin G. Management of severe asthma in childhood-state of the art and novel perspectives. Pediatr Allergy Immunol. 2014;25:111–21.

Konradsen JR, Nordlund B, Lidegran M, Pedroletti C, Grönlund H, van Hage M, et al. Problematic severe asthma: a proposed approach to identifying children who are severely resistant to therapy. Pediatr Allergy Immunol. 2011;22:9–18.

Global Initiative for Asthma Report. Global strategy for asthma management and prevention (updated 2016). . Accessed 07 June 2017.

Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43:343–53.

Article   CAS   PubMed   Google Scholar  

Vandenplas Y, Rudolph CD, Di Lorenzo C, Hassall E, Liptak G, Mazur L, et al. Pediatric gastroesophageal reflux clinical practice guidelines: joint recommendations of the north American Society for Pediatric Gastroenterology, Hepatology, and nutrition (NASPGHAN) and the European Society for Pediatric Gastroenterology, Hepatology, and nutrition (ESPGHAN). J Pediatr Gastroenterol Nutr. 2009;49:498–507.

Lødrup Carlsen KC, Hedlin G, Bush A, Wennergren G, de Benedictis FM, De Jongste JC, et al. Assessment of problematic severe asthma in children. Eur Respir J. 2011;37:432–40.

Milgrom H, Berger W, Nayak A, Gupta N, Pollard S, McAlary M, et al. Treatment of childhood asthma with anti-immunoglobulin E antibody (omalizumab). Pediatrics. 2001;108:E36.

Bush A, Saglani S. Management of severe asthma in children. Lancet. 2010;376:814–5.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Lang A, Mowinckel P, Sachs-Olsen C, Riiser A, Lunde J, Carlsen KH, et al. Asthma severity in childhood, untangling clinical phenotypes. Pediatr Allergy Immunol. 2010;21:945–53.

Nordlund B, Konradsen JR, Pedroletti C, Kull I, Hedlin G. The clinical benefit of evaluating health-related quality-of-life in children with problematic severe asthma. Acta Paediatr. 2011;100:1454–60.

Dean BB, Calimlim BC, Sacco P, Aguilar D, Maykut R, Tinkelman D. Uncontrolled asthma: assessing quality of life and productivity of children and their caregivers using a cross-sectional internet-based survey. Health Qual Life Outcomes. 2010;8:6.

Juniper EF, Guyatt GH, Feeny DH, Ferrie PJ, Griffith LE, Townsend M. Measuring quality of life in children with asthma. Qual Life Res. 1996;5:35–46.

British Thoracic Society. Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma, 2014. . Accessed 13 Apr 2016.

Montella S, Baraldi E, Cazzato S, Aralla R, Berardi M, Brunetti LM, et al. Severe asthma features in children: a case-control online survey. Ital J Pediatr. 2016;42:9.

Article   PubMed   PubMed Central   Google Scholar  

Fitzpatrick AM, Gaston BM, Erzurum SC, Teague WG, National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. Features of severe asthma in school-age children: Atopy and increased exhaled nitric oxide. J Allergy Clin Immunol. 2006;118:1218–25.

Simon MR, Chinchilli VM, Phillips BR, Sorkness CA, Lemanske RF Jr, Szefler SJ, et al. Forced expiratory flow between 25% and 75% of vital capacity and FEV1/forced vital capacity ratio in relation to clinical and physiological parameters in asthmatic children with normal FEV1 values. J Allergy Clin Immunol. 2010;126:527–34.

Hedlin G, Bush A, Lødrup Carlsen K, Wennergren G, De Benedictis FM, Melén E, et al. Problematic severe asthma in children, not one problem but many: a GA2LEN initiative. Eur Respir J. 2010;36:196–201.

Fitzpatrick AM, Teague WG. Severe asthma in children: insights from the National Heart, Lung, and Blood Institute's severe asthma research program. Pediatr Allergy Immunol Pulmonol. 2010;23:131–8.

Konradsen JR, Caffrey Osvald E, Hedlin G. Update on the current methods for the diagnosis and treatment of severe childhood asthma. Expert Rev Respir Med. 2015;9:769–77.

Lang AM, Konradsen J, Carlsen KH, Sachs-Olsen C, Mowinckel P, Hedlin G, et al. Identifying problematic severe asthma in the individual child—does lung function matter? Acta Paediatr. 2010;99:404–10.

Rao DR, Gaffin JM, Baxi SN, Sheehan WJ, Hoffman EB, Phipatanakul WJ. The utility of forced expiratory flow between 25% and 75% of vital capacity in predicting childhood asthma morbidity and severity. Asthma. 2012;49:586–92.

Eid N, Yandell B, Howell L, Eddy M, Sheikh S. Can peak expiratory flow predict airflow obstruction in children with asthma? Pediatrics. 2000;105:354–8.

Cicutto LC, Chapman KR, Chamberlain D, Downey GP. Difficult asthma: consider all of the possibilities. Can Respir J. 2000;7:415–8.

Wener RR, Bel EH. Severe refractory asthma: an update. Eur Respir Rev. 2013;22:227–35.

Bracken M, Fleming L, Hall P, et al. The importance of nurse-led home visits in the assessment of children with problematic asthma. Arch Dis Child. 2009;94:780–4.

De Groot EP, Kreggemeijer WJ, Brand PL. Getting the basics right resolves most cases of uncontrolled and problematic asthma. Acta Paediatr. 2015;104:916–21.

Grimaldi-Bensouda L, Zureik M, Aubier M, Humbert M, Levy J, Benichou J, et al. Does omalizumab make a difference to the real-life treatment of asthma exacerbations? Results from a large cohort of patients with severe uncontrolled asthma. Chest. 2013;143:398–405.

American Lung Association Asthma Clinical Research Centers, Mastronarde JG, Anthonisen NR, Castro M, Holbrook JT, Leone FT, et al. Efficacy of esomeprazole for treatment of poorly controlled asthma. N Engl J Med. 2009;360:1487–9.

Article   PubMed Central   Google Scholar  

Writing Committee for the American Lung Association Asthma Clinical Research Centers, Holbrook JT, Wise RA, Gold BD, Blake K, Brown ED, et al. Lansoprazole for children with poorly controlled asthma: a randomized controlled trial. JAMA 2012;307:373-381.

Wright AL, Holberg CJ, Martinez FD, Halonen M, Morgan W, Taussig LM. Epidemiology of physician-diagnosed allergic rhinitis in childhood. Pediatrics. 1994;94:895–901.

CAS   PubMed   Google Scholar  

De Groot EP, Nijkamp A, Duiverman EJ, Brand PL. Allergic rhinitis is associated with poor asthma control in children with asthma. Thorax. 2012;67:582–7.

Rotiroti G, Roberts G, Scadding GK. Rhinitis in children: common clinical presentations and differential diagnoses. Pediatr Allergy Immunol. 2015;26:103–10.

Bousquet J, Khaltaev N, Cruz AA, Denburg J, Fokkens WJ, Togias A, et al. Allergic rhinitis and its impact on asthma (ARIA). 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63:S8–160.

Deliu M, Belgrave D, Simpson A, Murray CS, Kerry G, Custovic A. Impact of rhinitis on asthma severity in school-age children. Allergy. 2014;69:1515–21.

Brozek JL, Bousquet J, Baena-Cagnani CE, Bonini S, Canonica GW, Casale TB, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol. 2010;126:466–76.

Weinberger M, Abu-Hasan M. Pseudo-asthma: when cough, wheezing, and dyspnea are not asthma. Pediatrics. 2007;120:855–64.

De Groot EP, Duiverman EJ, Brand PL. Dysfunctional breathing in children with asthma: a rare but relevant comorbidity. Eur Respir J. 2013;41:1068–73.

Barker NJ, Jones M, O'Connell NE, Everard ML. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in children. Cochrane Database Syst Rev. 2013;12:CD010376.

Google Scholar  

Section on Pediatric Pulmonology, Subcommittee on Obstructive Sleep Apnea Syndrome, American Academy of Pediatrics. Clinical practice guideline: diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2002;109:704–12.

Goldstein NA, Aronin C, Kantrowitz B, Hershcopf R, Fishkin S, Lee H, Weaver DE, et al. The prevalence of sleep-disordered breathing in children with asthma and its behavioral effects. Pediatr Pulmonol. 2015;50:1128–36.

Ross KR, Storfer-Isser A, Hart MA, Kibler AM, Rueschman M, Rosen CL, et al. Sleep-disordered breathing is associated with asthma severity in children. J Pediatr. 2012;160:736–42.

Santamaria F, Montella S, Greco L, Valerio G, Franzese A, Maniscalco M, et al. Obesity duration is associated to pulmonary function impairment in obese subjects. Obesity (Silver Spring). 2011;19:1623–8.

Sivapalan P, Diamant Z, Ulrik CS. Obesity and asthma: current knowledge and future needs. Curr Opin Pulm Med. 2015;21:80–5.

Rasmussen F, Hancox RJ. Mechanisms of obesity in asthma. Curr Opin Allergy Clin Immunol. 2014;14:35–43.

Santamaria F, Montella S, Pietrobelli A. Obesity and pulmonary disease: unanswered questions. Obes Rev. 2012;13:822–33.

Lang JE, Hossain J, Holbrook JT, Teague WG, Gold BD, Wise RA, et al. Gastro-oesophageal reflux and worse asthma control in obese children: a case of symptom misattribution? Thorax. 2016;71:238–46.

Santamaria F, Montella S, De Stefano S, Sperlì F, Barbarano F, Valerio G. Relationship between exhaled nitric oxide and body mass index in children and adolescents. J Allergy Clin Immunol. 2005;116:1163–4.

Van Huisstede A, Rudolphus A, Castro Cabezas M, Biter LU, van de Geijn GJ, Taube C, et al. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax. 2015;70:659–67.

Katzmarzyk PT, Bouchard C. Where is the beef? Waist circumference is more highly correlated with BMI and total body fat than with abdominal visceral fat in children. Int J Obes. 2014;38:753–4.

Article   CAS   Google Scholar  

De Groot EP, Duiverman EJ, Brand PL. Comorbidities of asthma during childhood: possibly important, yet poorly studied. Eur Respir J. 2010;36:671–8.

Sweeney J, Patterson CC, Menzies-Gow A, Niven RM, Mansur AH, Bucknall C, et al. Comorbidity in severe asthma requiring systemic corticosteroid therapy: cross-sectional data from the optimum patient care research database and the British thoracic difficult asthma registry. Thorax. 2016; .

Federal Drug Administration Advisory for Omalizumab. Available at: . . Accessed 4 Feb 2018.

European Medicines Agency: assessment report for Xolair. Available at: . Accessed 7 June 2017.

Chung KF. Targeting the interleukin pathway in the treatment of asthma. Lancet. 2015;386:1086–96.

Jensen RK, Plum M, Tjerrild L, Jakob T, Spillner E, Andersen GR. Structure of the omalizumab Fab. Acta Crystallogr F Struct Biol Commun. 2015;71:419–26.

Holgate S, Smith N, Massanari M, Jimenez P. Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy. 2009;64:1728–36.

Hill DA, Siracusa MC, Ruymann KR, Tait Wojno ED, Artis D, Spergel JM. Omalizumab therapy is associated with reduced circulating basophil populations in asthmatic children. Allergy. 2014;69:674–7.

Humbert M, Beasley R, Ayres J, Slavin R, Hébert J, Bousquet J, et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy. 2005;60:309–16.

Normansell R, Walker S, Milan SJ, Walters EH, Nair P. Omalizumab for asthma in adults and children. Cochrane Database Syst Rev. 2014;1:CD003559.

Lai T, Wang S, Xu Z, Zhang C, Zhao Y, Hu Y, Cao C, et al. Long-term efficacy and safety of omalizumab in patients with persistent uncontrolled allergic asthma: a systematic review and meta-analysis. Sci Rep. 2015;5:8191.

Abraham I, Alhossan A, Lee CS, Kutbi H, MacDonald K. “real-life” effectiveness studies of omalizumab in adult patients with severe allergic asthma: systematic review. Allergy. 2015; .

Lanier B, Bridges T, Kulus M, Taylor AF, Berhane I, Vidaurre CF. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J Allergy Clin Immunol. 2009;124:1210–6.

Solèr M, Matz J, Townley R, Buhl R, O'Brien J, Fox H, et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur Respir J. 2001;18:254–61.

Holgate ST. Cytokine and anti-cytokine therapy for the treatment of asthma and allergic disease. Cytokine. 2004;28:152–7.

Odajima H, Ebisawa M, Nagakura T, Fujisawa T, Akasawa A, Ito K, et al. Omalizumab in Japanese children with severe allergic asthma uncontrolled with standard therapy. Allergol Int. 2015;64:364–70.

Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364:1005–15.

Teach SJ, Gill MA, Togias A, Sorkness CA, Arbes SJ Jr, Calatroni A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015;136:1476–85.

Deschildre A, Marguet C, Salleron J, Pin I, Rittié JL, Derelle J, et al. Add-on omalizumab in children with severe allergic asthma: a 1-year real life survey. Eur Respir J. 2013;42:1224–33.

Deschildre A, Marguet C, Langlois C, Pin I, Rittié JL, Derelle J, et al. Real-life long-term omalizumab therapy in children with severe allergic asthma. Eur Respir J. 2015;46:856–9.

Rodrigo GJ, Neffen H. Systematic review on the use of omalizumab for the treatment of asthmatic children and adolescents. Pediatr Allergy Immunol. 2015;26:551–6.

Oba Y, Salzman GA. Cost-effectiveness analysis of omalizumab in adults and adolescents with moderate-to-severe allergic asthma. J Allergy Clin Immunol. 2004;114:265–9.

Campbell JD, Spackman DE, Sullivan SD. The costs and consequences of omalizumab in uncontrolled asthma from a USA payer perspective. Allergy. 2010;65:1141–8.

Busse W, Buhl R, Fernandez Vidaurre C, Blogg M, Zhu J, Eisner MD, et al. Omalizumab and the risk of malignancy: results from a pooled analysis. J Allergy Clin Immunol. 2012;129:983–9.

Lowe PJ, Renard D. Omalizumab decreases IgE production in patients with allergic (IgE-mediated) asthma; PKPD analysis of a biomarker, total IgE. Br J Clin Pharmacol. 2011;72:306–10.

Molimard M, Mala L, Bourdeix I, Le Gros V. Observational study in severe asthmatic patients after discontinuation of omalizumab for good asthma control. Respir Med. 2014;108:571–6.

Busse WW, Trzaskoma B, Omachi TA, Canvin J, Rosen K, Chipps BE, et al. Evaluating Xolair persistency of response after long-term therapy (XPORT). Am J Respir Crit Care Med. 2014;189:A6576.

Guilbert TW, Morgan WJ, Zeiger RS, Mauger DT, Boehmer SJ, Szefler SJ, et al. Long-term inhaled corticosteroids in preschool children at high risk for asthma. N Engl J Med. 2006;354:1985–97.

Akdis CA. Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med. 2012;18:736–49.

National Heart, Lung, and Blood Institute. Expert panel report 3: Guidelines for the diagnosis and management of asthma—full report 2007. Available at: . Accessed 4 Feb 2018.

Joint Task Force on Practice Parameters, American Academy of Allergy, Asthma and Immunology, American College of Allergy, Asthma and Immunology, Joint Council of Allergy, Asthma and Immunolgy. Allergen immunotherapy: a practice parameter second update. J Allergy Clin Immunol. 2007;120:S25–85.

Zuberbier T, Bachert C, Bousquet PJ, Passalacqua G, Walter Canonica G, Merk H, et al. GA(2) LEN/EAACI pocket guide for allergen-specific immunotherapy for allergic rhinitis and asthma. Allergy. 2010;65:1525–30.

Pajno GB, Bernardini R, Peroni D, Arasi S, Martelli A, Landi M, et al. Clinical practice recommendations for allergen-specific immunotherapy in children: the Italian consensus report. Ital J Pediatr. 2017;43:13.

Pitsios C, Demoly P, Bilo MB, Gerth van Wijk R, Pfaar O, Sturm GJ, et al. Clinical contraindications to allergen immunotherapy: an EAACI position paper. Allergy. 2015;70:897–909.

Tsabouri S, Mavroudi A, Feketea G, Guibas GV. Subcutaneous and sublingual immunotherapy in allergic asthma in children. Front Pediatr. 2017;5:82.

Jutel M, Agache I, Bonini S, Burks AW, Calderon M, Canonica W, et al. International consensus on allergy immunotherapy. J Allergy Clin Immunol. 2015;136:556–68.

Hedlin G, van Hage M. The role of immunotherapy in the management of childhood asthma. Ther Adv Respir Dis. 2012;6:137–46.

Lambert N, Guiddir T, Amat F, Just J. Pre-treatment by omalizumab allows allergen immunotherapy in children and young adults with severe allergic asthma. Pediatr Allergy Immunol. 2014;25:829–32.

Kopp MV, Hamelmann E, Zielen S, Kamin W, Bergmann K-C, Sieder C. Combination of omalizumab and specific immunotherapy is superior to immunotherapy in patients with seasonal allergic rhinoconjunctivitis and co-morbid seasonal allergic asthma. Clin Exp Allergy. 2009;39:271–9.

Massanari M, Nelson H, Casale T, Busse W, Kianifard F, Geba GP. Effect of pretreatment with omalizumab on the tolerability of specific immunotherapy in allergic asthma. J Allergy Clin Immunol. 2010;125:383–9.

Stelmach I, Kaczmarek-Woźniak J, Majak P, Olszowiec-Chlebna M, Jerzynska J. Efficacy and safety of high-doses sublingual immunotherapy in ultra-rush scheme in children allergic to grass pollen. Clin Exp Allergy. 2009;39:401–8.

Download references


The authors gratefully thank Dr. Marco Maglione for his contribution in the clinical assessment of the described cases. Medical writing assistance was provided by Stephen Walters on behalf of City Hills Proofreading.

No funding was secured for this study.

Availability of data and materials

All relevant data and materials are published in the manuscript.

Author information

Authors and affiliations.

Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy

Virginia Mirra, Silvia Montella & Francesca Santamaria

You can also search for this author in PubMed   Google Scholar


VM, SM and FS, authors of the current manuscript, declare that they have participated sufficiently in the work to take public responsibility for appropriate portions of the content. VM and SM carried out the initial investigations, drafted the initial manuscript, revised the manuscript, and approved the final manuscript as submitted. FS conceptualized and designed the study, and critically reviewed and approved the final manuscript as submitted. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Francesca Santamaria .

Ethics declarations

Ethics approval and consent to participate.

This study was approved by the ethics committee “Carlo Romano”, Federico II University, Naples, Italy. Children’s parents/legal guardians gave informed written consent to participate. The description of our cases adheres to the CARE standards of reporting checklist.

Consent for publication

Children’s parents/legal guardians provided informed written consent for the case report to be published.

Competing interests

The authors declare that they have no competing interests to disclose. Authors have no financial relationships relevant to this article to disclose.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Cite this article.

Mirra, V., Montella, S. & Santamaria, F. Pediatric severe asthma: a case series report and perspectives on anti-IgE treatment. BMC Pediatr 18 , 73 (2018).

Download citation

Received : 24 May 2016

Accepted : 29 January 2018

Published : 21 February 2018


Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Severe asthma
  • Adolescents
  • Asthma exacerbations

BMC Pediatrics

ISSN: 1471-2431

pediatric asthma case study with answers

  • Search Menu
  • Advance Articles
  • Supplements
  • Author Guidelines
  • Submission Site
  • Open Access
  • Self-Archiving Policy
  • Advertising & Corporate Services
  • Advertising
  • Reprints and ePrints
  • Sponsored Supplements
  • Branded Books
  • Journals Career Network
  • About Paediatrics & Child Health
  • About The Canadian Paediatric Society
  • Editorial Board
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Case 1 diagnosis: allergy bullying, clinical pearls.

  • < Previous

Case 1: A 12-year-old girl with food allergies and an acute asthma exacerbation

  • Article contents
  • Figures & tables
  • Supplementary Data

Lopamudra Das, Michelle GK Ward, Case 1: A 12-year-old girl with food allergies and an acute asthma exacerbation, Paediatrics & Child Health , Volume 19, Issue 2, February 2014, Pages 69–70,

  • Permissions Icon Permissions

A 12-year-old girl with a history of asthma presented to the emergency department with a three-day history of increased work of breathing, cough and wheezing. She reported no clear trigger for her respiratory symptoms, although she had noted some symptoms of a mild upper respiratory tract infection. With this episode, the patient had been using a short-acting bronchodilator more frequently than she had in the past, without the expected resolution of symptoms.

On the day of presentation, the patient awoke feeling ‘suffocated’ and her mother noted her lips to be blue. In the emergency department, her oxygen saturation was 85% and her respiratory rate was 40 breaths/min. She had significantly increased work of breathing and poor air entry bilaterally to both lung bases, with wheezing in the upper lung zones. She was treated with salbutamol/ipratropium and received intravenous steroids and magnesium sulfate. Her chest x-ray showed hyperinflation and no focal findings.

Her medical history revealed that she was followed by a respirologist for her asthma, had good medication adherence and had not experienced a significant exacerbation for six months. She also had a history of wheezing, dyspnea and pruritis with exposure to peanuts, chickpeas and lentils; she had been prescribed an injectible epinephrine device for this. However, her device had expired at the time of presentation. In the past, her wheezing episodes had been seasonal and related to exposure to grass and pollens; this presentation occurred during the winter. Further history revealed the probable cause of her presentation.

Although reluctant to disclose the information, our patient later revealed that she had been experiencing significant bullying at school, which was primarily related to her food allergies. Three days before her admission, classmates had smeared peanut butter on one of her schoolbooks. She developed pruritis immediately after opening the book and she started wheezing and coughing later that day. This event followed several months of being taunted with peanut products at school. The patient was experiencing low mood and reported new symptoms of anxiety related to school. The review of systems was otherwise negative, with no substance use.

The patient's asthma exacerbation resolved with conventional asthma treatment. Her pulmonary function tests were nonconcerning (forced expiratory volume in 1 s 94% and 99% of predicted) after her recovery. The trigger for her asthma exacerbation was likely multifactorial, related to exposure to the food allergen as well as the upper respiratory infection. A psychologist was consulted to assess the symptoms of anxiety and depression that had occurred as a result of the bullying. During the hospitalization, the medical team contacted the patient's school to provide education on allergy bullying, treatment of severe allergic reactions and its potential for life-threatening reactions with exposure to allergens. The medical team also recommended community resources for further education of students and staff about allergy bullying and its prevention.

Allergy bullying is a form of bullying with potentially severe medical outcomes. In recent years, it has gained increasing notoriety in schools and in the media. Population-based studies have shown that 20% to 35% of children with allergies experience bullying. In many cases (31% in one recent study [ 1 ]), this bullying is related directly to the food allergy. From a medical perspective, there are little published data regarding allergy bullying, and many health care providers may not be aware of the issue.

Allergy bullying can include teasing a child about their allergy, throwing food at a child, or even forcing them to touch or eat allergenic foods. Most episodes of allergy bullying occur at school, and can include episodes perpetrated by teachers and/or staff ( 2 ).

Allergy bullying can lead to allergic reactions, which may be mild or severe (eg, urticaria, wheezing, anaphylaxis), but may also lead to negative emotional consequences (sadness, depression) ( 2 ) and an overall decrease in quality of life measures ( 1 ). Adolescents commonly resist using medical devices, such as injectible epinephrine devices, and bullying may be a contributing factor for this ( 3 ). Attempting to conceal symptoms in a bullying situation may place children at risk for a worse outcome.

Physicians can play a key role in detecting allergy bullying and its health consequences. In many cases, children have not discussed this issue with their parents ( 1 ). Given the prevalence of bullying, its potential to lead to severe harm, including death, and the lack of awareness of this issue, clinicians should specifically ask about bullying in all children and teens with allergies. Physicians can also work with families and schools to support these children, educate their peers and school staff, and help prevent negative health outcomes from allergy bullying.

Online resources − A national charity that aims to inform, support, educate and advocate for the needs of individuals and families living with anaphylaxis, and to support and participate in research. This website includes education modules for schools and links to local support groups throughout Canada. − A website for teenagers with food allergies; includes a segment that addresses food bullying. − Contains numerous resources for children and their families, including a significant discussion on bullying and ways to prevent it.

Allergy bullying is common but is often unrecognized as a factor in clinical presentations of allergic reactions.

Physicians should make a point of asking about bullying in patients with allergies and become familiar with resources for dealing with allergy bullying.

Physicians can play roles as advocates, educators and collaborators with the school system to help make the school environment safer for children with allergies who may be at risk for allergy bullying.

Google Scholar

Email alerts

Citing articles via, looking for your next opportunity.

  • About Paediatrics & Child Health
  • Recommend to Your Librarian
  • Advertising and Corporate Services


  • Online ISSN 1918-1485
  • Print ISSN 1205-7088
  • Copyright © 2023 Oxford University Press
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2023 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

pediatric asthma case study with answers

  • Most Popular Articles
  • Exclusive Articles
  • Original Videos
  • Subscribe to Newsletters
  • Newsletter Archive
  • Inside EMS Podcast
  • EMS One-Stop Podcast
  • Line-of-Duty Deaths
  • How to Buy Guides
  • EMS Grant Assistance
  • Company Directory
  • Company News
  • EMS Product Deals
  • BrandFocus Product Features
  • Upcoming & On-Demand Webinars
  • Product Videos
  • All Products
  • Airway Management
  • Ambulance Disposables
  • Billing & Administration
  • Capnography
  • Communications
  • Consulting, Management & Legal Services
  • CPR & Resuscitation
  • ePCR - Electronic Patient Care Reporting
  • Infection Control
  • Medical Equipment
  • Medical Monitoring
  • Online Training
  • Patient Handling
  • Personal Protective Equipment
  • Vehicle Equipment
  • Community Paramedicine
  • EMS Assaults & Self Defense
  • EMS Education
  • Health & Wellness
  • Mass Casualty Incidents
  • Medical & Clinical
  • Patient Safety
  • Pediatric Care
  • Recruitment & Retention
  • Research Center
  • Volunteer/Rural EMS
  • What Paramedics Want Annual Report
  • Ambulances Held Hostage
  • EMS Burnout Repair Kit
  • Reimagining Resuscitation
  • Year One: Career Path for New EMTs
  • On-Demand Webinars
  • Find EMS Jobs
  • Continuing Education
  • Get Free Grant Assistance
  • Grant Eligible Products
  • Grant Writing
  • EMSGrantsHelp
  • EMS GrantFinder
  • Member Support
  • Privacy Policy
  • Cookie Notice
  • EMS Products

Jones and Bartlett Publishers

From the J&B Archives

Pediatric Case Study for Paramedics Answers: 7-Year-Old Female with Difficulty Breathing

Case Study Answers and Summary

1. What initial management is indicated for this child?

• 100% supplemental oxygen (via pediatric nonrebreathing mask)

  • Though clearly experiencing respiratory distress, this patient’s respiratory effort is producing adequate air movement. Therefore, positive-pressure ventilation support is not needed at this time.

You must carefully monitor the child with respiratory distress and be prepared to provide positive-pressure ventilations if signs of respiratory failure develop. Signs of respiratory failure include, among others, reduced tidal volume and poor air movement, decreased level of consciousness, a low (> 90%) or rapidly falling oxygen saturation, and signs of physical exhaustion.

Failure of the respiratory system is the most common cause of cardiac arrest in the pediatric population. However, with frequent respiratory system assessments and prompt management, this potential catastrophe can often be prevented.

2. What is your field impression of this child?

You should suspect that this child is experiencing an acute asthma attack. In addition to the complaint of difficulty breathing, the following pertinent findings support this field impression:

• Expiratory wheezing, which is a hallmark sign of a mild to moderate asthma attack. Expiratory wheezing indicates impaired airflow during expiration and is indicative of bronchospasm.

  • By no means is wheezing exclusive to asthma. Other conditions, such as pneumonia and toxic inhalations, cause wheezing as well. However, the clinical scenario involving this patient does not indicate a toxic exposure and the fact that she is afebrile (97.8°F) is not consistent with pneumonia or other infectious causes of respiratory distress.

• Cold air exposure, which is a common precipitant to an asthma attack. Like any other smooth muscle, the smooth muscle surrounding the bronchiole constricts when exposed to cold air.

• Prescribed medications, which indicate the presence of an episodic disease that requires periodic treatment. Other respiratory illnesses, such as croup, bronchitis, and pneumonia, are typically treated with a trial of medications, and usually resolve without the need for ongoing treatment.

• The nature of onset, which, in this patient, was coughing. As the bronchioles become irritated, the patient often begins to cough, sometimes violently. Then, as bronchospasm progresses, respiratory distress develops.

Asthma is the most common chronic childhood disease, affecting approximately 5 million American children over 1 year of age. Nearly half of all pediatric asthma deaths occur in the prehospital setting.

Asthma is a chronic but reversible condition, characterized by bronchospasm, mucous plugging, and edema in the lower airways. Asthma is commonly referred to as reactive airway disease (RAD) — a nonspecific condition in which intrinsic or extrinsic factors cause bronchospasm — at least initially, until a physician determines that the patient has met all of the diagnostic criteria for asthma.

An acute asthma attack is commonly precipitated by factors such as an allergen exposure, stress, exercise, recent upper respiratory infections, and exposure to cold air or passive cigarette smoke. In response to the precipitating event, a series of reactions occur in the lower airway. First, the smooth muscle surrounding the bronchiole begins to spasm, resulting in bronchoconstriction. Secondly, mucous glands and cells that line the lower airway secrete excessive mucous, which accumulates in the bronchioles, creating a plug. Finally, fluid shifts into the walls of the lower airway, resulting in edema that further decreases the diameter of the bronchiole. The net result is a narrowing of the small airways with increased resistance to airflow.

These three factors — bronchospasm, mucous plugging, and airway edema — result in a ventilation-perfusion mismatch. In other words, the pathophysiologic changes associated with asthma cause some alveoli to become hyperinflated due to air trapping, while other alveoli collapse (atelectasis). Hypoxemia develops because the collapsed alveoli are still being perfused, but are unable to participate in gas exchange. Therefore, the blood flowing through the capillaries adjacent to the collapsed alveoli returns to the left side of the heart, still unoxygenated. This condition is referred to as intrapulmonary shunting.

In between attacks, the child with asthma is typically asymptomatic. However, during an acute attack, varying degrees of difficulty breathing, tachypnea, tachycardia, and wheezing are present.

As a baseline, an acute asthma attack presents with some degree of respiratory distress. The presence of wheezing often characterizes the severity of the attack, and thus, the degree of bronchoconstriction. In a mild to moderate asthma attack, wheezing is typically audible at the end of expiration, indicating increased resistance to expiratory airflow. Oxygen saturation levels may be normal or slightly low. During a more severe asthma attack, wheezing may be audible during inspiration and expiration. Oxygen saturation levels typically reflect mild hypoxemia, with readings that usually range from 91% to 94%.

Status asthmaticus, the most severe exacerbation of asthma, is a life-threatening condition that often requires multiple modalities of frequent or continuous treatment to improve. The child with status asthmaticus presents with air hunger (struggling to breathe). However, because of the profound bronchoconstriction and minimal airflow through the bronchioles, wheezing is either faint or completely absent. Oxygen saturation levels often reflect severe hypoxia, with readings well below 90%. As hypoxemia worsens, hypercarbia (increased arterial CO2 levels) develops and the child may become unresponsive.

3.  Are the child’s vital signs and SAMPLE history consistent with your field impression?

According to the following formula, this child’s blood pressure of 96/56 mm Hg is consistent with her age:

• Age [in years] 3 2 1 70 5 systolic blood pressure

Her heart rate and respiratory rate, however, indicate respiratory distress. Additionally, her oxygen saturation of 93% indicates mild hypoxemia.

Although she cannot remember the name of her medication, the fact that she has prescribed medications is an indicator of an episodic disease that requires periodic treatment, such as asthma. Additionally, she has confirmed that her doctor told her that she has a “breathing problem.”

As previously discussed, her episode of coughing prior to developing respiratory distress is a fairly common finding in patients with asthma.

Back to Pediatric Case Study for Paramedics: 7-Year-Old Female with Difficulty Breathing

About the author

Educating tens of millions of people worldwide, Jones and Bartlett Publishers is a global leader in educational publishing, providing unique textbooks, reference products, testing and assessment services, and training materials in both print and digital formats. Working with distinguished authors and national organizations, J&B offers authoritative products for students and professionals in schools, corporations, hospitals, government organizations, and the military.

Founded in 1983, J&B is the largest independent publisher focusing on the critical fields of Public Safety, Medicine, Nursing, Allied Health, Health Administration, and Public Health.

Read more from Jones and Bartlett

  • EMS Training

Join the discussion

You must enable JavaScript in your browser to view and post comments.

  • Attorneys shift death of Elijah McClain onto Colo. paramedics as officers' trial begins 3
  • 'Can you please send an ambulance?': Pilot calls 911 after ejecting from F-35
  • 5 errors that are giving you incorrect blood pressure readings 14
  • 'Don't wait': Ga. county sheriff OKs police transports if EMS unavailable 1
  • Panic attack or anxiety attack? Here’s how to tell 1

More EMS1 Articles

EMS1 Exclusives

Poll call: what is your preferred shift length, crush injury and compartment syndrome best practices.

More EMS1 Exclusives

Copyright © 2023 EMS1. All rights reserved.

Make EMS1 your homepage

  • Open the tools menu in your browser. This may be called “Tools” or use an icon like the cog or menu bars
  • Select the option or tab named “Internet Options (Internet Explorer)”, “Options (Firefox)”, “Preferences (Safari)” or “Settings (Chrome)”.
  • Look for a box or option labeled “Home Page (Internet Explorer, Firefox, Safari)” or “On Startup (Chrome)”.
  • Enter “” and click OK.

If you need further help setting your homepage, check your browser’s Help menu

You get wide range of high quality services from our professional team

Remember, the longer the due date, the lower the price. Place your order in advance for a discussion post with our paper writing services to save money!

pediatric asthma case study with answers

What We Guarantee

  • No Plagiarism
  • On Time Delevery
  • Privacy Policy
  • Complaint Resolution

Charita Davis

1035 Natoma Street, San Francisco

This exquisite Edwardian single-family house has a 1344 Sqft main…

pediatric asthma case study with answers

Finished Papers

pediatric asthma case study with answers

Online Essay Writing Service to Reach Academic Success.

Are you looking for the best essay writing service to help you with meeting your academic goals? You are lucky because your search has ended. is a place where all students get exactly what they need: customized academic papers written by experts with vast knowledge in all fields of study. All of our writers are dedicated to their job and do their best to produce all types of academic papers of superior quality. We have experts even in very specific fields of study, so you will definitely find a writer who can manage your order.

pediatric asthma case study with answers

Customer Reviews

pediatric asthma case study with answers

My Custom Write-ups

pediatric asthma case study with answers

  • Dissertations
  • Business Plans
  • PowerPoint Presentations
  • Editing and Proofreading
  • Annotated Bibliography
  • Book Review/Movie Review
  • Reflective Paper
  • Company/Industry Analysis
  • Article Analysis
  • Custom Writing Service
  • Assignment Help
  • Write My Essay
  • Paper Writing Help
  • Write Papers For Me
  • College Paper Writing Service

Customer Reviews

pediatric asthma case study with answers

Rebecca Geach

Finished Papers


  1. (PDF) A case study of asthma care in school age children using nurse

    pediatric asthma case study with answers

  2. Asthma case study answers

    pediatric asthma case study with answers

  3. Pediatric Nursing

    pediatric asthma case study with answers

  4. Pediactric Asthma HESI Case Study;ANSWERED

    pediatric asthma case study with answers

  5. Pediatric Asthma Case Study With Answers

    pediatric asthma case study with answers

  6. Asthma case study answers

    pediatric asthma case study with answers



  2. Pediatric Emergency Medicine Symposium First Day, Part One

  3. Pediatric Asthma ERC Guidelines

  4. GMT20230813 190824 Recording 2560x1624

  5. ECU Health works with patients, families on asthma education



  1. Asthma case study

    Jared Johnson, 10 years old Interrelated Concepts (In order of emphasis) UNFOLDING Reasoning Case Study: STUDENT Jared Johnson is a 10 year-old African-American boy with a history of moderate persistent asthma. He is being admitted to the pediatric unit of the hospital from the walk-in clinic with an acute asthma exacerbation.

  2. Patient Presentation

    (Parakh, 2019) intermittent coughing expiratory wheezing subcostal retractions temperature of 100.8 PO heart rate of 100 bpm respiratory rate of 40 pulse oximetry 92 % purulent mucous from bilateral nares catching her breath often while speaking

  3. ATI Video Case Study Pediatric Asthma Flashcards

    Test Match Q-Chat Created by hyviemarie_bautista Terms in this set (5) A nurse is caring for an adolescent who is experiencing status asthmaticus. Which of the following actions should the nurse take? Administer humidified oxygen. A nurse is assessing a school-age child who has asthma and is experiencing a severe exacerbation.

  4. Nursing Case Study for Pediatric Asthma

    Outline. Anthony is a 6-yr-old male patient brought to the pediatric ER with a history of asthma since he came home from the NICU as an infant. He lives with his parents, Bob and Josh, who adopted him after fostering him from age 4 months. They have tried the usual nebulizer treatments but Anthony is not responding as usual, so they brought him ...

  5. Pediatric severe asthma: a case series report and perspectives on anti

    11 Citations 1 Altmetric Metrics Abstract Background The primary goal of asthma management is to achieve disease control for reducing the risk of future exacerbations and progressive loss of lung function. Asthma not responding to treatment may result in significant morbidity.

  6. Case 1: A 12-year-old girl with food allergies and an acute asthma

    Cite Permissions Share A 12-year-old girl with a history of asthma presented to the emergency department with a three-day history of increased work of breathing, cough and wheezing. She reported no clear trigger for her respiratory symptoms, although she had noted some symptoms of a mild upper respiratory tract infection.

  7. Pediatric Asthma Case Study Answers.docx

    Pediatric Asthma Case Study Answers L.S. is a 7-year-old who is being directly admitted to your unit from his pediatrician's office. His mother has brought him directly to the unit without stopping to admit him. She immediately tells you that she is a single parent and has 2 other children at home with a babysitter.


    PEDIATRIC CASE STUDY: ASTHMA. SITUATION: Laura, age 9 years, is brought to the hospital ER by her mother. Laura is in acute respiratory distress. Her mother informs the nurse that Laura has had multiple hospital admissions related to asthma. Laura does not respond to the usual treatment while she is in the ER. She is admitted to the pediatric unit with a diagnosis of acute asthma.

  9. PDF Pediatric Asthma Case Study Breakout: Applying the Care Manager Process

    Marcus is a 17 year-old high school junior. Marcus was well, with the "usual colds," until the age of six. He then began having a larger number of lower respiratory tract illnesses and was diagnosed with asthma. He had eczema as a child but that has since resolved. He is on the football team.

  10. Pediatric Asthma and Manual Therapy- A Case Report

    Abstract. Background: Asthma is an inflammatory clutter of the airways that causes wheezing, breathlessness, chest tightness, and coughing. In India, approximate calculation indicates a prevalence ...

  11. Pediatric Case Study for Paramedics Answers: 7-Year-Old Female ...

    Case Study Answers and Summary 1. What initial management is indicated for this child? • 100% supplemental oxygen (via pediatric nonrebreathing mask) Though clearly experiencing respiratory...

  12. Keith RN Asthma Case Study

    Nur 211 pediatric asthma unfolding reasoning jared johnson, 10 years old primary concept gas exchange interrelated concepts order of emphasis) inflammation. Skip to document. ... Asthma case study. Pediatrics Nursing Lab (Nur 112) Assignments. 96% (57) 16. Keith RN Congenital Heart Disease Case Study. Pediatrics Nursing Lab (Nur 112) Assignments.

  13. Jared Johnson Pediatric Asthma

    1. What is the primary problem your patient is most likely presenting? Impair gas exchange, asthma crisis 2. What is the underlying cause/pathophysiology of this primary problem?(Relate initial manifestations to the pathophysiology of the primary problem) Mechanism of Action: Volume/time frame to

  14. Pediatric Asthma unfolding case study. answers.pdf

    View Pediatric Asthma unfolding case study. answers.pdf from NUR 2025 at Labour? College. Tommy 8-year-old Tommy was admitted last night with wheezing, difficulty in breathing, and coughing. He was

  15. Case study Progression of asthma in childhood

    (J Allergy Clin Immunol 2005;115:700-7.) Key words: Airway inflammation, airway remodeling, asthma, eosinophils, progression CASE PRESENTATION AB is a 14-year-old girl who was first evaluated at the National Jewish Medical and Research Center at 8 years of age.

  16. Pediatric Asthma Case Study With Answers

    Pediatric Asthma Case Study With Answers. College of Education. Resources. College of Education. 1905 women's cooking class at the University of Arizona. Source: University of Arizona, "UA History & Traditions: 1905. The Cooking Class at Work," (accessed Sep. 26, 2013) Light Contrast. Big White Cursor.

  17. Pediatric Asthma Case Study With Answers

    Pediatric Asthma Case Study With Answers © 2022 Texas Tech University Nov 3, 2022 3:33 PM The purpose of education is to spread knowledge to the younger generation. Without education, tradition is lost, as well as the potential of youth. For centuries, the old have taught. Majors, Minors & Degrees Pre-Professional Preparation

  18. Pediatric Asthma Case Study With Answers

    There is nothing easier than using our essay writer service. Here is how everything works at : You fill out an order form. Make sure to provide us with all the details. If you have any comments or additional files, upload them. This will help your writer produce the paper that will exactly meet your needs.

  19. Pediatric Asthma Case Study With Answers

    Pediatric Asthma Case Study With Answers, What To Write In The Summary Part Of Your Resume, List Of Dissertation Topics For Architecture, Custom Movie Review Writers Websites Us, Cognos Tm1 Sample Resume, American Doctoral Dissertations Online Uk, English Common Language Essay

  20. Pediatric Asthma Case Study With Answers

    Pediatric Asthma Case Study With Answers. Writing Rewriting Editing. Writing. 760. Finished Papers. Critical Thinking Essay on Nursing. Essay (Any Type), Biology (and other Life Sciences), 7 pages by Mitrofan Yudin. 599 Orders prepared.

  21. Pediatric Asthma Case Study With Answers

    Pediatric Asthma Case Study With Answers, My Grandfather Essay Story, Cover Letter For Product Development Position, How To Write Definitions In An Essay, Research Proposal Problem, Essay Conservation Water Electricity, Quitting is easy, but staying clean after a quit can be difficult. Finding a good book can be a challenge, especially if you ...

  22. Pediatric Asthma Case Study With Answers

    Pediatric Asthma Case Study With Answers - Making a thesis is a stressful process. Do yourself a favor and save your worries for later. ... Questions-Answers, Research proposal, Discussion Board Post, Powerpoint Presentation, Case Study, Book Report, Rewriting, Annotated Bibliography, Excel Exercises, Grant Proposal, Response paper, Business ...

  23. Pediatric Asthma Case Study With Answers

    Pediatric Asthma Case Study With Answers, Mba Essays Examples, Best Book Review Ghostwriters Site For College, Chicano Movement Essay, Analysis Editor Websites Uk, Essay On My Favourite Game Badminton 200 Words In English, A Friend In Need Is A Friend Indeed Short Essay In English