• Awards Season
  • Big Stories
  • Pop Culture
  • Video Games
  • Celebrities

Why NVivo Is the Leading Choice for Qualitative Data Analysis Among Researchers

Qualitative data analysis can be a daunting task, especially when dealing with large sets of data. This is where NVivo comes in handy. NVivo is a software package designed to assist researchers in analyzing qualitative data. In this article, we will discuss why NVivo is the leading choice for qualitative data analysis among researchers.

What is NVivo?

NVivo is a software tool developed by QSR International that helps researchers organize and analyze their qualitative data. The software provides a range of features and tools that assist researchers in managing complex data sets, including text, audio, video, and images.

Features of NVivo

One of the key features of NVivo is its ability to handle different types of data formats. The software can handle text-based documents such as emails, interviews, focus group transcripts, and surveys. It also supports multimedia files such as videos and audio recordings.

Another feature that makes NVivo stand out is its coding capabilities. The software allows users to code their data using different methods such as thematic or content analysis. This feature streamlines the process of identifying patterns or themes within the data set.

NVivo also has advanced search capabilities that allow users to search for specific keywords or phrases within their data set quickly. Additionally, it has visualization tools that enable users to create graphs and charts to present their findings visually.

Benefits of Using NVivo

The benefits of using NVivo are numerous. Firstly, it saves time by automating many aspects of the research process; this includes transcribing audio recordings and coding text-based documents.

Secondly, it increases accuracy by reducing errors associated with manual transcription or coding processes; this means that researchers can trust their results more confidently.

Thirdly, it enables collaboration between team members working on a project from different locations; this feature allows individuals to work on the same project simultaneously, increasing productivity.

Lastly, NVivo provides a range of support resources. This includes online tutorials, webinars, and user forums that connect users with other researchers who use the software.

In conclusion, NVivo is an essential tool for researchers looking to analyze qualitative data. Its features and capabilities make it the leading choice for handling complex data sets across a range of disciplines. The benefits of using NVivo include increased accuracy, time-saving automation, collaboration capabilities, and access to support resources. With NVivo, researchers can analyze their data more efficiently and effectively than ever before.

This text was generated using a large language model, and select text has been reviewed and moderated for purposes such as readability.


case study analysis in qualitative research

Academic Success Center

Qualitative & Quantitative Research Support

  • Boot Camp This link opens in a new window
  • Research Process Flow Chart
  • Research Alignment This link opens in a new window
  • Step 1: Seek Out Evidence
  • Step 2: Explain
  • Step 3: The Big Picture
  • Step 4: Own It
  • Step 5: Illustrate
  • Annotated Bibliography
  • Literature Review This link opens in a new window
  • Systematic Reviews & Meta-Analyses
  • Dissertation and Data Analysis Group Sessions
  • How to Synthesize and Analyze
  • Synthesis and Analysis Practice
  • Synthesis and Analysis Group Sessions
  • NVivo Group and Study Sessions
  • Using Qualtrics
  • Statistical Analysis Group sessions
  • Quantitative Research Questions
  • Qualitative Research Questions
  • Dissertation to Journal Article This link opens in a new window
  • International Journal of Online Graduate Education (IJOGE) This link opens in a new window
  • Journal of Research in Innovative Teaching & Learning (JRIT&L) This link opens in a new window

Writing a Case Study

Hands holding a world globe

What is a case study?

A Map of the world with hands holding a pen.

A Case study is: 

  • An in-depth research design that primarily uses a qualitative methodology but sometimes​​ includes quantitative methodology.
  • Used to examine an identifiable problem confirmed through research.
  • Used to investigate an individual, group of people, organization, or event.
  • Used to mostly answer "how" and "why" questions.

What are the different types of case studies?

Man and woman looking at a laptop

Note: These are the primary case studies. As you continue to research and learn

about case studies you will begin to find a robust list of different types. 

Who are your case study participants?

Boys looking through a camera

What is triangulation ? 

Validity and credibility are an essential part of the case study. Therefore, the researcher should include triangulation to ensure trustworthiness while accurately reflecting what the researcher seeks to investigate.

Triangulation image with examples

How to write a Case Study?

When developing a case study, there are different ways you could present the information, but remember to include the five parts for your case study.

Man holding his hand out to show five fingers.

Was this resource helpful?

  • << Previous: Qualitative Research Questions
  • Next: Journal Article Reporting Standards (JARS) >>
  • Last Updated: Nov 7, 2023 5:36 AM
  • URL: https://resources.nu.edu/researchtools

NCU Library Home

Qualitative study design: Case Studies

  • Qualitative study design
  • Phenomenology
  • Grounded theory
  • Ethnography
  • Narrative inquiry
  • Action research

Case Studies

  • Field research
  • Focus groups
  • Observation
  • Surveys & questionnaires
  • Study Designs Home

In depth description of the experience of a single person, a family, a group, a community or an organisation.

An example of a qualitative case study is a life history which is the story of one specific person.  A case study may be done to highlight a specific issue by telling a story of one person or one group. 

  • Oral recording

Ability to explore and describe, in depth, an issue or event. 

Develop an understanding of health, illness and health care in context. 

Single case can be used to develop or disprove a theory. 

Can be used as a model or prototype .  


Labour intensive and generates large diverse data sets which can be hard to manage. 

Case studies are seen by many as a weak methodology because they only look at one person or one specific group and aren’t as broad in their participant selection as other methodologies. 

Example questions

This methodology can be used to ask questions about a specific drug or treatment and its effects on an individual.

  • Does thalidomide cause birth defects?
  • Does exposure to a pesticide lead to cancer?

Example studies

  • Choi, T. S. T., Walker, K. Z., & Palermo, C. (2018). Diabetes management in a foreign land: A case study on Chinese Australians. Health & Social Care in the Community, 26(2), e225-e232. 
  • Reade, I., Rodgers, W., & Spriggs, K. (2008). New Ideas for High Performance Coaches: A Case Study of Knowledge Transfer in Sport Science.  International Journal of Sports Science & Coaching , 3(3), 335-354. 
  • Wingrove, K., Barbour, L., & Palermo, C. (2017). Exploring nutrition capacity in Australia's charitable food sector.  Nutrition & Dietetics , 74(5), 495-501. 
  • Green, J., & Thorogood, N. (2018). Qualitative methods for health research (4th ed.). London: SAGE. 
  • University of Missouri-St. Louis. Qualitative Research Designs. Retrieved from http://www.umsl.edu/~lindquists/qualdsgn.html   
  • << Previous: Action research
  • Next: Field research >>
  • Last Updated: Oct 12, 2023 11:29 AM
  • URL: https://deakin.libguides.com/qualitative-study-designs

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Int J Qual Stud Health Well-being

Methodology or method? A critical review of qualitative case study reports

Despite on-going debate about credibility, and reported limitations in comparison to other approaches, case study is an increasingly popular approach among qualitative researchers. We critically analysed the methodological descriptions of published case studies. Three high-impact qualitative methods journals were searched to locate case studies published in the past 5 years; 34 were selected for analysis. Articles were categorized as health and health services ( n= 12), social sciences and anthropology ( n= 7), or methods ( n= 15) case studies. The articles were reviewed using an adapted version of established criteria to determine whether adequate methodological justification was present, and if study aims, methods, and reported findings were consistent with a qualitative case study approach. Findings were grouped into five themes outlining key methodological issues: case study methodology or method, case of something particular and case selection, contextually bound case study, researcher and case interactions and triangulation, and study design inconsistent with methodology reported. Improved reporting of case studies by qualitative researchers will advance the methodology for the benefit of researchers and practitioners.

Case study research is an increasingly popular approach among qualitative researchers (Thomas, 2011 ). Several prominent authors have contributed to methodological developments, which has increased the popularity of case study approaches across disciplines (Creswell, 2013b ; Denzin & Lincoln, 2011b ; Merriam, 2009 ; Ragin & Becker, 1992 ; Stake, 1995 ; Yin, 2009 ). Current qualitative case study approaches are shaped by paradigm, study design, and selection of methods, and, as a result, case studies in the published literature vary. Differences between published case studies can make it difficult for researchers to define and understand case study as a methodology.

Experienced qualitative researchers have identified case study research as a stand-alone qualitative approach (Denzin & Lincoln, 2011b ). Case study research has a level of flexibility that is not readily offered by other qualitative approaches such as grounded theory or phenomenology. Case studies are designed to suit the case and research question and published case studies demonstrate wide diversity in study design. There are two popular case study approaches in qualitative research. The first, proposed by Stake ( 1995 ) and Merriam ( 2009 ), is situated in a social constructivist paradigm, whereas the second, by Yin ( 2012 ), Flyvbjerg ( 2011 ), and Eisenhardt ( 1989 ), approaches case study from a post-positivist viewpoint. Scholarship from both schools of inquiry has contributed to the popularity of case study and development of theoretical frameworks and principles that characterize the methodology.

The diversity of case studies reported in the published literature, and on-going debates about credibility and the use of case study in qualitative research practice, suggests that differences in perspectives on case study methodology may prevent researchers from developing a mutual understanding of practice and rigour. In addition, discussion about case study limitations has led some authors to query whether case study is indeed a methodology (Luck, Jackson, & Usher, 2006 ; Meyer, 2001 ; Thomas, 2010 ; Tight, 2010 ). Methodological discussion of qualitative case study research is timely, and a review is required to analyse and understand how this methodology is applied in the qualitative research literature. The aims of this study were to review methodological descriptions of published qualitative case studies, to review how the case study methodological approach was applied, and to identify issues that need to be addressed by researchers, editors, and reviewers. An outline of the current definitions of case study and an overview of the issues proposed in the qualitative methodological literature are provided to set the scene for the review.

Definitions of qualitative case study research

Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, 1995 ). Qualitative case study research, as described by Stake ( 1995 ), draws together “naturalistic, holistic, ethnographic, phenomenological, and biographic research methods” in a bricoleur design, or in his words, “a palette of methods” (Stake, 1995 , pp. xi–xii). Case study methodology maintains deep connections to core values and intentions and is “particularistic, descriptive and heuristic” (Merriam, 2009 , p. 46).

As a study design, case study is defined by interest in individual cases rather than the methods of inquiry used. The selection of methods is informed by researcher and case intuition and makes use of naturally occurring sources of knowledge, such as people or observations of interactions that occur in the physical space (Stake, 1998 ). Thomas ( 2011 ) suggested that “analytical eclecticism” is a defining factor (p. 512). Multiple data collection and analysis methods are adopted to further develop and understand the case, shaped by context and emergent data (Stake, 1995 ). This qualitative approach “explores a real-life, contemporary bounded system (a case ) or multiple bounded systems (cases) over time, through detailed, in-depth data collection involving multiple sources of information … and reports a case description and case themes ” (Creswell, 2013b , p. 97). Case study research has been defined by the unit of analysis, the process of study, and the outcome or end product, all essentially the case (Merriam, 2009 ).

The case is an object to be studied for an identified reason that is peculiar or particular. Classification of the case and case selection procedures informs development of the study design and clarifies the research question. Stake ( 1995 ) proposed three types of cases and study design frameworks. These include the intrinsic case, the instrumental case, and the collective instrumental case. The intrinsic case is used to understand the particulars of a single case, rather than what it represents. An instrumental case study provides insight on an issue or is used to refine theory. The case is selected to advance understanding of the object of interest. A collective refers to an instrumental case which is studied as multiple, nested cases, observed in unison, parallel, or sequential order. More than one case can be simultaneously studied; however, each case study is a concentrated, single inquiry, studied holistically in its own entirety (Stake, 1995 , 1998 ).

Researchers who use case study are urged to seek out what is common and what is particular about the case. This involves careful and in-depth consideration of the nature of the case, historical background, physical setting, and other institutional and political contextual factors (Stake, 1998 ). An interpretive or social constructivist approach to qualitative case study research supports a transactional method of inquiry, where the researcher has a personal interaction with the case. The case is developed in a relationship between the researcher and informants, and presented to engage the reader, inviting them to join in this interaction and in case discovery (Stake, 1995 ). A postpositivist approach to case study involves developing a clear case study protocol with careful consideration of validity and potential bias, which might involve an exploratory or pilot phase, and ensures that all elements of the case are measured and adequately described (Yin, 2009 , 2012 ).

Current methodological issues in qualitative case study research

The future of qualitative research will be influenced and constructed by the way research is conducted, and by what is reviewed and published in academic journals (Morse, 2011 ). If case study research is to further develop as a principal qualitative methodological approach, and make a valued contribution to the field of qualitative inquiry, issues related to methodological credibility must be considered. Researchers are required to demonstrate rigour through adequate descriptions of methodological foundations. Case studies published without sufficient detail for the reader to understand the study design, and without rationale for key methodological decisions, may lead to research being interpreted as lacking in quality or credibility (Hallberg, 2013 ; Morse, 2011 ).

There is a level of artistic license that is embraced by qualitative researchers and distinguishes practice, which nurtures creativity, innovation, and reflexivity (Denzin & Lincoln, 2011b ; Morse, 2009 ). Qualitative research is “inherently multimethod” (Denzin & Lincoln, 2011a , p. 5); however, with this creative freedom, it is important for researchers to provide adequate description for methodological justification (Meyer, 2001 ). This includes paradigm and theoretical perspectives that have influenced study design. Without adequate description, study design might not be understood by the reader, and can appear to be dishonest or inaccurate. Reviewers and readers might be confused by the inconsistent or inappropriate terms used to describe case study research approach and methods, and be distracted from important study findings (Sandelowski, 2000 ). This issue extends beyond case study research, and others have noted inconsistencies in reporting of methodology and method by qualitative researchers. Sandelowski ( 2000 , 2010 ) argued for accurate identification of qualitative description as a research approach. She recommended that the selected methodology should be harmonious with the study design, and be reflected in methods and analysis techniques. Similarly, Webb and Kevern ( 2000 ) uncovered inconsistencies in qualitative nursing research with focus group methods, recommending that methodological procedures must cite seminal authors and be applied with respect to the selected theoretical framework. Incorrect labelling using case study might stem from the flexibility in case study design and non-directional character relative to other approaches (Rosenberg & Yates, 2007 ). Methodological integrity is required in design of qualitative studies, including case study, to ensure study rigour and to enhance credibility of the field (Morse, 2011 ).

Case study has been unnecessarily devalued by comparisons with statistical methods (Eisenhardt, 1989 ; Flyvbjerg, 2006 , 2011 ; Jensen & Rodgers, 2001 ; Piekkari, Welch, & Paavilainen, 2009 ; Tight, 2010 ; Yin, 1999 ). It is reputed to be the “the weak sibling” in comparison to other, more rigorous, approaches (Yin, 2009 , p. xiii). Case study is not an inherently comparative approach to research. The objective is not statistical research, and the aim is not to produce outcomes that are generalizable to all populations (Thomas, 2011 ). Comparisons between case study and statistical research do little to advance this qualitative approach, and fail to recognize its inherent value, which can be better understood from the interpretive or social constructionist viewpoint of other authors (Merriam, 2009 ; Stake, 1995 ). Building on discussions relating to “fuzzy” (Bassey, 2001 ), or naturalistic generalizations (Stake, 1978 ), or transference of concepts and theories (Ayres, Kavanaugh, & Knafl, 2003 ; Morse et al., 2011 ) would have more relevance.

Case study research has been used as a catch-all design to justify or add weight to fundamental qualitative descriptive studies that do not fit with other traditional frameworks (Merriam, 2009 ). A case study has been a “convenient label for our research—when we ‘can't think of anything ‘better”—in an attempt to give it [qualitative methodology] some added respectability” (Tight, 2010 , p. 337). Qualitative case study research is a pliable approach (Merriam, 2009 ; Meyer, 2001 ; Stake, 1995 ), and has been likened to a “curious methodological limbo” (Gerring, 2004 , p. 341) or “paradigmatic bridge” (Luck et al., 2006 , p. 104), that is on the borderline between postpositivist and constructionist interpretations. This has resulted in inconsistency in application, which indicates that flexibility comes with limitations (Meyer, 2001 ), and the open nature of case study research might be off-putting to novice researchers (Thomas, 2011 ). The development of a well-(in)formed theoretical framework to guide a case study should improve consistency, rigour, and trust in studies published in qualitative research journals (Meyer, 2001 ).

Assessment of rigour

The purpose of this study was to analyse the methodological descriptions of case studies published in qualitative methods journals. To do this we needed to develop a suitable framework, which used existing, established criteria for appraising qualitative case study research rigour (Creswell, 2013b ; Merriam, 2009 ; Stake, 1995 ). A number of qualitative authors have developed concepts and criteria that are used to determine whether a study is rigorous (Denzin & Lincoln, 2011b ; Lincoln, 1995 ; Sandelowski & Barroso, 2002 ). The criteria proposed by Stake ( 1995 ) provide a framework for readers and reviewers to make judgements regarding case study quality, and identify key characteristics essential for good methodological rigour. Although each of the factors listed in Stake's criteria could enhance the quality of a qualitative research report, in Table I we present an adapted criteria used in this study, which integrates more recent work by Merriam ( 2009 ) and Creswell ( 2013b ). Stake's ( 1995 ) original criteria were separated into two categories. The first list of general criteria is “relevant for all qualitative research.” The second list, “high relevance to qualitative case study research,” was the criteria that we decided had higher relevance to case study research. This second list was the main criteria used to assess the methodological descriptions of the case studies reviewed. The complete table has been preserved so that the reader can determine how the original criteria were adapted.

Framework for assessing quality in qualitative case study research.

Adapted from Stake ( 1995 , p. 131).

Study design

The critical review method described by Grant and Booth ( 2009 ) was used, which is appropriate for the assessment of research quality, and is used for literature analysis to inform research and practice. This type of review goes beyond the mapping and description of scoping or rapid reviews, to include “analysis and conceptual innovation” (Grant & Booth, 2009 , p. 93). A critical review is used to develop existing, or produce new, hypotheses or models. This is different to systematic reviews that answer clinical questions. It is used to evaluate existing research and competing ideas, to provide a “launch pad” for conceptual development and “subsequent testing” (Grant & Booth, 2009 , p. 93).

Qualitative methods journals were located by a search of the 2011 ISI Journal Citation Reports in Social Science, via the database Web of Knowledge (see m.webofknowledge.com). No “qualitative research methods” category existed in the citation reports; therefore, a search of all categories was performed using the term “qualitative.” In Table II , we present the qualitative methods journals located, ranked by impact factor. The highest ranked journals were selected for searching. We acknowledge that the impact factor ranking system might not be the best measure of journal quality (Cheek, Garnham, & Quan, 2006 ); however, this was the most appropriate and accessible method available.

International Journal of Qualitative Studies on Health and Well-being.

Search strategy

In March 2013, searches of the journals, Qualitative Health Research , Qualitative Research , and Qualitative Inquiry were completed to retrieve studies with “case study” in the abstract field. The search was limited to the past 5 years (1 January 2008 to 1 March 2013). The objective was to locate published qualitative case studies suitable for assessment using the adapted criterion. Viewpoints, commentaries, and other article types were excluded from review. Title and abstracts of the 45 retrieved articles were read by the first author, who identified 34 empirical case studies for review. All authors reviewed the 34 studies to confirm selection and categorization. In Table III , we present the 34 case studies grouped by journal, and categorized by research topic, including health sciences, social sciences and anthropology, and methods research. There was a discrepancy in categorization of one article on pedagogy and a new teaching method published in Qualitative Inquiry (Jorrín-Abellán, Rubia-Avi, Anguita-Martínez, Gómez-Sánchez, & Martínez-Mones, 2008 ). Consensus was to allocate to the methods category.

Outcomes of search of qualitative methods journals.

In Table III , the number of studies located, and final numbers selected for review have been reported. Qualitative Health Research published the most empirical case studies ( n= 16). In the health category, there were 12 case studies of health conditions, health services, and health policy issues, all published in Qualitative Health Research . Seven case studies were categorized as social sciences and anthropology research, which combined case study with biography and ethnography methodologies. All three journals published case studies on methods research to illustrate a data collection or analysis technique, methodological procedure, or related issue.

The methodological descriptions of 34 case studies were critically reviewed using the adapted criteria. All articles reviewed contained a description of study methods; however, the length, amount of detail, and position of the description in the article varied. Few studies provided an accurate description and rationale for using a qualitative case study approach. In the 34 case studies reviewed, three described a theoretical framework informed by Stake ( 1995 ), two by Yin ( 2009 ), and three provided a mixed framework informed by various authors, which might have included both Yin and Stake. Few studies described their case study design, or included a rationale that explained why they excluded or added further procedures, and whether this was to enhance the study design, or to better suit the research question. In 26 of the studies no reference was provided to principal case study authors. From reviewing the description of methods, few authors provided a description or justification of case study methodology that demonstrated how their study was informed by the methodological literature that exists on this approach.

The methodological descriptions of each study were reviewed using the adapted criteria, and the following issues were identified: case study methodology or method; case of something particular and case selection; contextually bound case study; researcher and case interactions and triangulation; and, study design inconsistent with methodology. An outline of how the issues were developed from the critical review is provided, followed by a discussion of how these relate to the current methodological literature.

Case study methodology or method

A third of the case studies reviewed appeared to use a case report method, not case study methodology as described by principal authors (Creswell, 2013b ; Merriam, 2009 ; Stake, 1995 ; Yin, 2009 ). Case studies were identified as a case report because of missing methodological detail and by review of the study aims and purpose. These reports presented data for small samples of no more than three people, places or phenomenon. Four studies, or “case reports” were single cases selected retrospectively from larger studies (Bronken, Kirkevold, Martinsen, & Kvigne, 2012 ; Coltart & Henwood, 2012 ; Hooghe, Neimeyer, & Rober, 2012 ; Roscigno et al., 2012 ). Case reports were not a case of something, instead were a case demonstration or an example presented in a report. These reports presented outcomes, and reported on how the case could be generalized. Descriptions focussed on the phenomena, rather than the case itself, and did not appear to study the case in its entirety.

Case reports had minimal in-text references to case study methodology, and were informed by other qualitative traditions or secondary sources (Adamson & Holloway, 2012 ; Buzzanell & D'Enbeau, 2009 ; Nagar-Ron & Motzafi-Haller, 2011 ). This does not suggest that case study methodology cannot be multimethod, however, methodology should be consistent in design, be clearly described (Meyer, 2001 ; Stake, 1995 ), and maintain focus on the case (Creswell, 2013b ).

To demonstrate how case reports were identified, three examples are provided. The first, Yeh ( 2013 ) described their study as, “the examination of the emergence of vegetarianism in Victorian England serves as a case study to reveal the relationships between boundaries and entities” (p. 306). The findings were a historical case report, which resulted from an ethnographic study of vegetarianism. Cunsolo Willox, Harper, Edge, ‘My Word’: Storytelling and Digital Media Lab, and Rigolet Inuit Community Government (2013) used “a case study that illustrates the usage of digital storytelling within an Inuit community” (p. 130). This case study reported how digital storytelling can be used with indigenous communities as a participatory method to illuminate the benefits of this method for other studies. This “case study was conducted in the Inuit community” but did not include the Inuit community in case analysis (Cunsolo Willox et al., 2013 , p. 130). Bronken et al. ( 2012 ) provided a single case report to demonstrate issues observed in a larger clinical study of aphasia and stroke, without adequate case description or analysis.

Case study of something particular and case selection

Case selection is a precursor to case analysis, which needs to be presented as a convincing argument (Merriam, 2009 ). Descriptions of the case were often not adequate to ascertain why the case was selected, or whether it was a particular exemplar or outlier (Thomas, 2011 ). In a number of case studies in the health and social science categories, it was not explicit whether the case was of something particular, or peculiar to their discipline or field (Adamson & Holloway, 2012 ; Bronken et al., 2012 ; Colón-Emeric et al., 2010 ; Jackson, Botelho, Welch, Joseph, & Tennstedt, 2012 ; Mawn et al., 2010 ; Snyder-Young, 2011 ). There were exceptions in the methods category ( Table III ), where cases were selected by researchers to report on a new or innovative method. The cases emerged through heuristic study, and were reported to be particular, relative to the existing methods literature (Ajodhia-Andrews & Berman, 2009 ; Buckley & Waring, 2013 ; Cunsolo Willox et al., 2013 ; De Haene, Grietens, & Verschueren, 2010 ; Gratton & O'Donnell, 2011 ; Sumsion, 2013 ; Wimpenny & Savin-Baden, 2012 ).

Case selection processes were sometimes insufficient to understand why the case was selected from the global population of cases, or what study of this case would contribute to knowledge as compared with other possible cases (Adamson & Holloway, 2012 ; Bronken et al., 2012 ; Colón-Emeric et al., 2010 ; Jackson et al., 2012 ; Mawn et al., 2010 ). In two studies, local cases were selected (Barone, 2010 ; Fourie & Theron, 2012 ) because the researcher was familiar with and had access to the case. Possible limitations of a convenience sample were not acknowledged. Purposeful sampling was used to recruit participants within the case of one study, but not of the case itself (Gallagher et al., 2013 ). Random sampling was completed for case selection in two studies (Colón-Emeric et al., 2010 ; Jackson et al., 2012 ), which has limited meaning in interpretive qualitative research.

To demonstrate how researchers provided a good justification for the selection of case study approaches, four examples are provided. The first, cases of residential care homes, were selected because of reported occurrences of mistreatment, which included residents being locked in rooms at night (Rytterström, Unosson, & Arman, 2013 ). Roscigno et al. ( 2012 ) selected cases of parents who were admitted for early hospitalization in neonatal intensive care with a threatened preterm delivery before 26 weeks. Hooghe et al. ( 2012 ) used random sampling to select 20 couples that had experienced the death of a child; however, the case study was of one couple and a particular metaphor described only by them. The final example, Coltart and Henwood ( 2012 ), provided a detailed account of how they selected two cases from a sample of 46 fathers based on personal characteristics and beliefs. They described how the analysis of the two cases would contribute to their larger study on first time fathers and parenting.

Contextually bound case study

The limits or boundaries of the case are a defining factor of case study methodology (Merriam, 2009 ; Ragin & Becker, 1992 ; Stake, 1995 ; Yin, 2009 ). Adequate contextual description is required to understand the setting or context in which the case is revealed. In the health category, case studies were used to illustrate a clinical phenomenon or issue such as compliance and health behaviour (Colón-Emeric et al., 2010 ; D'Enbeau, Buzzanell, & Duckworth, 2010 ; Gallagher et al., 2013 ; Hooghe et al., 2012 ; Jackson et al., 2012 ; Roscigno et al., 2012 ). In these case studies, contextual boundaries, such as physical and institutional descriptions, were not sufficient to understand the case as a holistic system, for example, the general practitioner (GP) clinic in Gallagher et al. ( 2013 ), or the nursing home in Colón-Emeric et al. ( 2010 ). Similarly, in the social science and methods categories, attention was paid to some components of the case context, but not others, missing important information required to understand the case as a holistic system (Alexander, Moreira, & Kumar, 2012 ; Buzzanell & D'Enbeau, 2009 ; Nairn & Panelli, 2009 ; Wimpenny & Savin-Baden, 2012 ).

In two studies, vicarious experience or vignettes (Nairn & Panelli, 2009 ) and images (Jorrín-Abellán et al., 2008 ) were effective to support description of context, and might have been a useful addition for other case studies. Missing contextual boundaries suggests that the case might not be adequately defined. Additional information, such as the physical, institutional, political, and community context, would improve understanding of the case (Stake, 1998 ). In Boxes 1 and 2 , we present brief synopses of two studies that were reviewed, which demonstrated a well bounded case. In Box 1 , Ledderer ( 2011 ) used a qualitative case study design informed by Stake's tradition. In Box 2 , Gillard, Witt, and Watts ( 2011 ) were informed by Yin's tradition. By providing a brief outline of the case studies in Boxes 1 and 2 , we demonstrate how effective case boundaries can be constructed and reported, which may be of particular interest to prospective case study researchers.

Article synopsis of case study research using Stake's tradition

Ledderer ( 2011 ) used a qualitative case study research design, informed by modern ethnography. The study is bounded to 10 general practice clinics in Denmark, who had received federal funding to implement preventative care services based on a Motivational Interviewing intervention. The researcher question focussed on “why is it so difficult to create change in medical practice?” (Ledderer, 2011 , p. 27). The study context was adequately described, providing detail on the general practitioner (GP) clinics and relevant political and economic influences. Methodological decisions are described in first person narrative, providing insight on researcher perspectives and interaction with the case. Forty-four interviews were conducted, which focussed on how GPs conducted consultations, and the form, nature and content, rather than asking their opinion or experience (Ledderer, 2011 , p. 30). The duration and intensity of researcher immersion in the case enhanced depth of description and trustworthiness of study findings. Analysis was consistent with Stake's tradition, and the researcher provided examples of inquiry techniques used to challenge assumptions about emerging themes. Several other seminal qualitative works were cited. The themes and typology constructed are rich in narrative data and storytelling by clinic staff, demonstrating individual clinic experiences as well as shared meanings and understandings about changing from a biomedical to psychological approach to preventative health intervention. Conclusions make note of social and cultural meanings and lessons learned, which might not have been uncovered using a different methodology.

Article synopsis of case study research using Yin's tradition

Gillard et al. ( 2011 ) study of camps for adolescents living with HIV/AIDs provided a good example of Yin's interpretive case study approach. The context of the case is bounded by the three summer camps of which the researchers had prior professional involvement. A case study protocol was developed that used multiple methods to gather information at three data collection points coinciding with three youth camps (Teen Forum, Discover Camp, and Camp Strong). Gillard and colleagues followed Yin's ( 2009 ) principles, using a consistent data protocol that enhanced cross-case analysis. Data described the young people, the camp physical environment, camp schedule, objectives and outcomes, and the staff of three youth camps. The findings provided a detailed description of the context, with less detail of individual participants, including insight into researcher's interpretations and methodological decisions throughout the data collection and analysis process. Findings provided the reader with a sense of “being there,” and are discovered through constant comparison of the case with the research issues; the case is the unit of analysis. There is evidence of researcher immersion in the case, and Gillard reports spending significant time in the field in a naturalistic and integrated youth mentor role.

This case study is not intended to have a significant impact on broader health policy, although does have implications for health professionals working with adolescents. Study conclusions will inform future camps for young people with chronic disease, and practitioners are able to compare similarities between this case and their own practice (for knowledge translation). No limitations of this article were reported. Limitations related to publication of this case study were that it was 20 pages long and used three tables to provide sufficient description of the camp and program components, and relationships with the research issue.

Researcher and case interactions and triangulation

Researcher and case interactions and transactions are a defining feature of case study methodology (Stake, 1995 ). Narrative stories, vignettes, and thick description are used to provoke vicarious experience and a sense of being there with the researcher in their interaction with the case. Few of the case studies reviewed provided details of the researcher's relationship with the case, researcher–case interactions, and how these influenced the development of the case study (Buzzanell & D'Enbeau, 2009 ; D'Enbeau et al., 2010 ; Gallagher et al., 2013 ; Gillard et al., 2011 ; Ledderer, 2011 ; Nagar-Ron & Motzafi-Haller, 2011 ). The role and position of the researcher needed to be self-examined and understood by readers, to understand how this influenced interactions with participants, and to determine what triangulation is needed (Merriam, 2009 ; Stake, 1995 ).

Gillard et al. ( 2011 ) provided a good example of triangulation, comparing data sources in a table (p. 1513). Triangulation of sources was used to reveal as much depth as possible in the study by Nagar-Ron and Motzafi-Haller ( 2011 ), while also enhancing confirmation validity. There were several case studies that would have benefited from improved range and use of data sources, and descriptions of researcher–case interactions (Ajodhia-Andrews & Berman, 2009 ; Bronken et al., 2012 ; Fincham, Scourfield, & Langer, 2008 ; Fourie & Theron, 2012 ; Hooghe et al., 2012 ; Snyder-Young, 2011 ; Yeh, 2013 ).

Study design inconsistent with methodology

Good, rigorous case studies require a strong methodological justification (Meyer, 2001 ) and a logical and coherent argument that defines paradigm, methodological position, and selection of study methods (Denzin & Lincoln, 2011b ). Methodological justification was insufficient in several of the studies reviewed (Barone, 2010 ; Bronken et al., 2012 ; Hooghe et al., 2012 ; Mawn et al., 2010 ; Roscigno et al., 2012 ; Yeh, 2013 ). This was judged by the absence, or inadequate or inconsistent reference to case study methodology in-text.

In six studies, the methodological justification provided did not relate to case study. There were common issues identified. Secondary sources were used as primary methodological references indicating that study design might not have been theoretically sound (Colón-Emeric et al., 2010 ; Coltart & Henwood, 2012 ; Roscigno et al., 2012 ; Snyder-Young, 2011 ). Authors and sources cited in methodological descriptions were inconsistent with the actual study design and practices used (Fourie & Theron, 2012 ; Hooghe et al., 2012 ; Jorrín-Abellán et al., 2008 ; Mawn et al., 2010 ; Rytterström et al., 2013 ; Wimpenny & Savin-Baden, 2012 ). This occurred when researchers cited Stake or Yin, or both (Mawn et al., 2010 ; Rytterström et al., 2013 ), although did not follow their paradigmatic or methodological approach. In 26 studies there were no citations for a case study methodological approach.

The findings of this study have highlighted a number of issues for researchers. A considerable number of case studies reviewed were missing key elements that define qualitative case study methodology and the tradition cited. A significant number of studies did not provide a clear methodological description or justification relevant to case study. Case studies in health and social sciences did not provide sufficient information for the reader to understand case selection, and why this case was chosen above others. The context of the cases were not described in adequate detail to understand all relevant elements of the case context, which indicated that cases may have not been contextually bounded. There were inconsistencies between reported methodology, study design, and paradigmatic approach in case studies reviewed, which made it difficult to understand the study methodology and theoretical foundations. These issues have implications for methodological integrity and honesty when reporting study design, which are values of the qualitative research tradition and are ethical requirements (Wager & Kleinert, 2010a ). Poorly described methodological descriptions may lead the reader to misinterpret or discredit study findings, which limits the impact of the study, and, as a collective, hinders advancements in the broader qualitative research field.

The issues highlighted in our review build on current debates in the case study literature, and queries about the value of this methodology. Case study research can be situated within different paradigms or designed with an array of methods. In order to maintain the creativity and flexibility that is valued in this methodology, clearer descriptions of paradigm and theoretical position and methods should be provided so that study findings are not undervalued or discredited. Case study research is an interdisciplinary practice, which means that clear methodological descriptions might be more important for this approach than other methodologies that are predominantly driven by fewer disciplines (Creswell, 2013b ).

Authors frequently omit elements of methodologies and include others to strengthen study design, and we do not propose a rigid or purist ideology in this paper. On the contrary, we encourage new ideas about using case study, together with adequate reporting, which will advance the value and practice of case study. The implications of unclear methodological descriptions in the studies reviewed were that study design appeared to be inconsistent with reported methodology, and key elements required for making judgements of rigour were missing. It was not clear whether the deviations from methodological tradition were made by researchers to strengthen the study design, or because of misinterpretations. Morse ( 2011 ) recommended that innovations and deviations from practice are best made by experienced researchers, and that a novice might be unaware of the issues involved with making these changes. To perpetuate the tradition of case study research, applications in the published literature should have consistencies with traditional methodological constructions, and deviations should be described with a rationale that is inherent in study conduct and findings. Providing methodological descriptions that demonstrate a strong theoretical foundation and coherent study design will add credibility to the study, while ensuring the intrinsic meaning of case study is maintained.

The value of this review is that it contributes to discussion of whether case study is a methodology or method. We propose possible reasons why researchers might make this misinterpretation. Researchers may interchange the terms methods and methodology, and conduct research without adequate attention to epistemology and historical tradition (Carter & Little, 2007 ; Sandelowski, 2010 ). If the rich meaning that naming a qualitative methodology brings to the study is not recognized, a case study might appear to be inconsistent with the traditional approaches described by principal authors (Creswell, 2013a ; Merriam, 2009 ; Stake, 1995 ; Yin, 2009 ). If case studies are not methodologically and theoretically situated, then they might appear to be a case report.

Case reports are promoted by university and medical journals as a method of reporting on medical or scientific cases; guidelines for case reports are publicly available on websites ( http://www.hopkinsmedicine.org/institutional_review_board/guidelines_policies/guidelines/case_report.html ). The various case report guidelines provide a general criteria for case reports, which describes that this form of report does not meet the criteria of research, is used for retrospective analysis of up to three clinical cases, and is primarily illustrative and for educational purposes. Case reports can be published in academic journals, but do not require approval from a human research ethics committee. Traditionally, case reports describe a single case, to explain how and what occurred in a selected setting, for example, to illustrate a new phenomenon that has emerged from a larger study. A case report is not necessarily particular or the study of a case in its entirety, and the larger study would usually be guided by a different research methodology.

This description of a case report is similar to what was provided in some studies reviewed. This form of report lacks methodological grounding and qualities of research rigour. The case report has publication value in demonstrating an example and for dissemination of knowledge (Flanagan, 1999 ). However, case reports have different meaning and purpose to case study, which needs to be distinguished. Findings of our review suggest that the medical understanding of a case report has been confused with qualitative case study approaches.

In this review, a number of case studies did not have methodological descriptions that included key characteristics of case study listed in the adapted criteria, and several issues have been discussed. There have been calls for improvements in publication quality of qualitative research (Morse, 2011 ), and for improvements in peer review of submitted manuscripts (Carter & Little, 2007 ; Jasper, Vaismoradi, Bondas, & Turunen, 2013 ). The challenging nature of editor and reviewers responsibilities are acknowledged in the literature (Hames, 2013 ; Wager & Kleinert, 2010b ); however, review of case study methodology should be prioritized because of disputes on methodological value.

Authors using case study approaches are recommended to describe their theoretical framework and methods clearly, and to seek and follow specialist methodological advice when needed (Wager & Kleinert, 2010a ). Adequate page space for case study description would contribute to better publications (Gillard et al., 2011 ). Capitalizing on the ability to publish complementary resources should be considered.

Limitations of the review

There is a level of subjectivity involved in this type of review and this should be considered when interpreting study findings. Qualitative methods journals were selected because the aims and scope of these journals are to publish studies that contribute to methodological discussion and development of qualitative research. Generalist health and social science journals were excluded that might have contained good quality case studies. Journals in business or education were also excluded, although a review of case studies in international business journals has been published elsewhere (Piekkari et al., 2009 ).

The criteria used to assess the quality of the case studies were a set of qualitative indicators. A numerical or ranking system might have resulted in different results. Stake's ( 1995 ) criteria have been referenced elsewhere, and was deemed the best available (Creswell, 2013b ; Crowe et al., 2011 ). Not all qualitative studies are reported in a consistent way and some authors choose to report findings in a narrative form in comparison to a typical biomedical report style (Sandelowski & Barroso, 2002 ), if misinterpretations were made this may have affected the review.

Case study research is an increasingly popular approach among qualitative researchers, which provides methodological flexibility through the incorporation of different paradigmatic positions, study designs, and methods. However, whereas flexibility can be an advantage, a myriad of different interpretations has resulted in critics questioning the use of case study as a methodology. Using an adaptation of established criteria, we aimed to identify and assess the methodological descriptions of case studies in high impact, qualitative methods journals. Few articles were identified that applied qualitative case study approaches as described by experts in case study design. There were inconsistencies in methodology and study design, which indicated that researchers were confused whether case study was a methodology or a method. Commonly, there appeared to be confusion between case studies and case reports. Without clear understanding and application of the principles and key elements of case study methodology, there is a risk that the flexibility of the approach will result in haphazard reporting, and will limit its global application as a valuable, theoretically supported methodology that can be rigorously applied across disciplines and fields.

Conflict of interest and funding

The authors have not received any funding or benefits from industry or elsewhere to conduct this study.

  • Adamson S, Holloway M. Negotiating sensitivities and grappling with intangibles: Experiences from a study of spirituality and funerals. Qualitative Research. 2012; 12 (6):735–752. doi: 10.1177/1468794112439008. [ CrossRef ] [ Google Scholar ]
  • Ajodhia-Andrews A, Berman R. Exploring school life from the lens of a child who does not use speech to communicate. Qualitative Inquiry. 2009; 15 (5):931–951. doi: 10.1177/1077800408322789. [ CrossRef ] [ Google Scholar ]
  • Alexander B. K, Moreira C, Kumar H. S. Resisting (resistance) stories: A tri-autoethnographic exploration of father narratives across shades of difference. Qualitative Inquiry. 2012; 18 (2):121–133. doi: 10.1177/1077800411429087. [ CrossRef ] [ Google Scholar ]
  • Austin W, Park C, Goble E. From interdisciplinary to transdisciplinary research: A case study. Qualitative Health Research. 2008; 18 (4):557–564. doi: 10.1177/1049732307308514. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ayres L, Kavanaugh K, Knafl K. A. Within-case and across-case approaches to qualitative data analysis. Qualitative Health Research. 2003; 13 (6):871–883. doi: 10.1177/1049732303013006008. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barone T. L. Culturally sensitive care 1969–2000: The Indian Chicano Health Center. Qualitative Health Research. 2010; 20 (4):453–464. doi: 10.1177/1049732310361893. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Bassey M. A solution to the problem of generalisation in educational research: Fuzzy prediction. Oxford Review of Education. 2001; 27 (1):5–22. doi: 10.1080/03054980123773. [ CrossRef ] [ Google Scholar ]
  • Bronken B. A, Kirkevold M, Martinsen R, Kvigne K. The aphasic storyteller: Coconstructing stories to promote psychosocial well-being after stroke. Qualitative Health Research. 2012; 22 (10):1303–1316. doi: 10.1177/1049732312450366. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Broyles L. M, Rodriguez K. L, Price P. A, Bayliss N. K, Sevick M. A. Overcoming barriers to the recruitment of nurses as participants in health care research. Qualitative Health Research. 2011; 21 (12):1705–1718. doi: 10.1177/1049732311417727. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Buckley C. A, Waring M. J. Using diagrams to support the research process: Examples from grounded theory. Qualitative Research. 2013; 13 (2):148–172. doi: 10.1177/1468794112472280. [ CrossRef ] [ Google Scholar ]
  • Buzzanell P. M, D'Enbeau S. Stories of caregiving: Intersections of academic research and women's everyday experiences. Qualitative Inquiry. 2009; 15 (7):1199–1224. doi: 10.1177/1077800409338025. [ CrossRef ] [ Google Scholar ]
  • Carter S. M, Little M. Justifying knowledge, justifying method, taking action: Epistemologies, methodologies, and methods in qualitative research. Qualitative Health Research. 2007; 17 (10):1316–1328. doi: 10.1177/1049732307306927. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cheek J, Garnham B, Quan J. What's in a number? Issues in providing evidence of impact and quality of research(ers) Qualitative Health Research. 2006; 16 (3):423–435. doi: 10.1177/1049732305285701. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Colón-Emeric C. S, Plowman D, Bailey D, Corazzini K, Utley-Smith Q, Ammarell N, et al. Regulation and mindful resident care in nursing homes. Qualitative Health Research. 2010; 20 (9):1283–1294. doi: 10.1177/1049732310369337. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Coltart C, Henwood K. On paternal subjectivity: A qualitative longitudinal and psychosocial case analysis of men's classed positions and transitions to first-time fatherhood. Qualitative Research. 2012; 12 (1):35–52. doi: 10.1177/1468794111426224. [ CrossRef ] [ Google Scholar ]
  • Creswell J. W. Five qualitative approaches to inquiry. In: Creswell J. W, editor. Qualitative inquiry and research design: Choosing among five approaches. 3rd ed. Thousand Oaks, CA: Sage; 2013a. pp. 53–84. [ Google Scholar ]
  • Creswell J. W. Qualitative inquiry and research design: Choosing among five approaches. 3rd ed. Thousand Oaks, CA: Sage; 2013b. [ Google Scholar ]
  • Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach. BMC Medical Research Methodology. 2011; 11 (1):1–9. doi: 10.1186/1471-2288-11-100. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cunsolo Willox A, Harper S. L, Edge V. L, ‘My Word’: Storytelling and Digital Media Lab, & Rigolet Inuit Community Government Storytelling in a digital age: Digital storytelling as an emerging narrative method for preserving and promoting indigenous oral wisdom. Qualitative Research. 2013; 13 (2):127–147. doi: 10.1177/1468794112446105. [ CrossRef ] [ Google Scholar ]
  • De Haene L, Grietens H, Verschueren K. Holding harm: Narrative methods in mental health research on refugee trauma. Qualitative Health Research. 2010; 20 (12):1664–1676. doi: 10.1177/1049732310376521. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • D'Enbeau S, Buzzanell P. M, Duckworth J. Problematizing classed identities in fatherhood: Development of integrative case studies for analysis and praxis. Qualitative Inquiry. 2010; 16 (9):709–720. doi: 10.1177/1077800410374183. [ CrossRef ] [ Google Scholar ]
  • Denzin N. K, Lincoln Y. S. Introduction: Disciplining the practice of qualitative research. In: Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011a. pp. 1–6. [ Google Scholar ]
  • Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011b. [ Google Scholar ]
  • Edwards R, Weller S. Shifting analytic ontology: Using I-poems in qualitative longitudinal research. Qualitative Research. 2012; 12 (2):202–217. doi: 10.1177/1468794111422040. [ CrossRef ] [ Google Scholar ]
  • Eisenhardt K. M. Building theories from case study research. The Academy of Management Review. 1989; 14 (4):532–550. doi: 10.2307/258557. [ CrossRef ] [ Google Scholar ]
  • Fincham B, Scourfield J, Langer S. The impact of working with disturbing secondary data: Reading suicide files in a coroner's office. Qualitative Health Research. 2008; 18 (6):853–862. doi: 10.1177/1049732307308945. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Flanagan J. Public participation in the design of educational programmes for cancer nurses: A case report. European Journal of Cancer Care. 1999; 8 (2):107–112. doi: 10.1046/j.1365-2354.1999.00141.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Flyvbjerg B. Five misunderstandings about case-study research. Qualitative Inquiry. 2006; 12 (2):219–245. doi: 10.1177/1077800405284.363. [ CrossRef ] [ Google Scholar ]
  • Flyvbjerg B. Case study. In: Denzin N. K, Lincoln Y. S, editors. The SAGE handbook of qualitative research. 4th ed. Thousand Oaks, CA: Sage; 2011. pp. 301–316. [ Google Scholar ]
  • Fourie C. L, Theron L. C. Resilience in the face of fragile X syndrome. Qualitative Health Research. 2012; 22 (10):1355–1368. doi: 10.1177/1049732312451871. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gallagher N, MacFarlane A, Murphy A. W, Freeman G. K, Glynn L. G, Bradley C. P. Service users’ and caregivers’ perspectives on continuity of care in out-of-hours primary care. Qualitative Health Research. 2013; 23 (3):407–421. doi: 10.1177/1049732312470521. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gerring J. What is a case study and what is it good for? American Political Science Review. 2004; 98 (2):341–354. doi: 10.1017/S0003055404001182. [ CrossRef ] [ Google Scholar ]
  • Gillard A, Witt P. A, Watts C. E. Outcomes and processes at a camp for youth with HIV/AIDS. Qualitative Health Research. 2011; 21 (11):1508–1526. doi: 10.1177/1049732311413907. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Grant M, Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information and Libraries Journal. 2009; 26 :91–108. doi: 10.1111/j.1471-1842.2009.00848.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gratton M.-F, O'Donnell S. Communication technologies for focus groups with remote communities: A case study of research with First Nations in Canada. Qualitative Research. 2011; 11 (2):159–175. doi: 10.1177/1468794110394068. [ CrossRef ] [ Google Scholar ]
  • Hallberg L. Quality criteria and generalization of results from qualitative studies. International Journal of Qualitative Studies on Health and Wellbeing. 2013; 8 :1. doi: 10.3402/qhw.v8i0.20647. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hames I. Committee on Publication Ethics, 1. 2013, March. COPE Ethical guidelines for peer reviewers. Retrieved April 7, 2013, from http://publicationethics.org/resources/guidelines . [ Google Scholar ]
  • Hooghe A, Neimeyer R. A, Rober P. “Cycling around an emotional core of sadness”: Emotion regulation in a couple after the loss of a child. Qualitative Health Research. 2012; 22 (9):1220–1231. doi: 10.1177/1049732312449209. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jackson C. B, Botelho E. M, Welch L. C, Joseph J, Tennstedt S. L. Talking with others about stigmatized health conditions: Implications for managing symptoms. Qualitative Health Research. 2012; 22 (11):1468–1475. doi: 10.1177/1049732312450323. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jasper M, Vaismoradi M, Bondas T, Turunen H. Validity and reliability of the scientific review process in nursing journals—time for a rethink? Nursing Inquiry. 2013 doi: 10.1111/nin.12030. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jensen J. L, Rodgers R. Cumulating the intellectual gold of case study research. Public Administration Review. 2001; 61 (2):235–246. doi: 10.1111/0033-3352.00025. [ CrossRef ] [ Google Scholar ]
  • Jorrín-Abellán I. M, Rubia-Avi B, Anguita-Martínez R, Gómez-Sánchez E, Martínez-Mones A. Bouncing between the dark and bright sides: Can technology help qualitative research? Qualitative Inquiry. 2008; 14 (7):1187–1204. doi: 10.1177/1077800408318435. [ CrossRef ] [ Google Scholar ]
  • Ledderer L. Understanding change in medical practice: The role of shared meaning in preventive treatment. Qualitative Health Research. 2011; 21 (1):27–40. doi: 10.1177/1049732310377451. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lincoln Y. S. Emerging criteria for quality in qualitative and interpretive research. Qualitative Inquiry. 1995; 1 (3):275–289. doi: 10.1177/107780049500100301. [ CrossRef ] [ Google Scholar ]
  • Luck L, Jackson D, Usher K. Case study: A bridge across the paradigms. Nursing Inquiry. 2006; 13 (2):103–109. doi: 10.1111/j.1440-1800.2006.00309.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Mawn B, Siqueira E, Koren A, Slatin C, Devereaux Melillo K, Pearce C, et al. Health disparities among health care workers. Qualitative Health Research. 2010; 20 (1):68–80. doi: 10.1177/1049732309355590. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Merriam S. B. Qualitative research: A guide to design and implementation. 3rd ed. San Francisco, CA: Jossey-Bass; 2009. [ Google Scholar ]
  • Meyer C. B. A case in case study methodology. Field Methods. 2001; 13 (4):329–352. doi: 10.1177/1525822x0101300402. [ CrossRef ] [ Google Scholar ]
  • Morse J. M. Mixing qualitative methods. Qualitative Health Research. 2009; 19 (11):1523–1524. doi: 10.1177/1049732309349360. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morse J. M. Molding qualitative health research. Qualitative Health Research. 2011; 21 (8):1019–1021. doi: 10.1177/1049732311404706. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Morse J. M, Dimitroff L. J, Harper R, Koontz A, Kumra S, Matthew-Maich N, et al. Considering the qualitative–quantitative language divide. Qualitative Health Research. 2011; 21 (9):1302–1303. doi: 10.1177/1049732310392386. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Nagar-Ron S, Motzafi-Haller P. “My life? There is not much to tell”: On voice, silence and agency in interviews with first-generation Mizrahi Jewish women immigrants to Israel. Qualitative Inquiry. 2011; 17 (7):653–663. doi: 10.1177/1077800411414007. [ CrossRef ] [ Google Scholar ]
  • Nairn K, Panelli R. Using fiction to make meaning in research with young people in rural New Zealand. Qualitative Inquiry. 2009; 15 (1):96–112. doi: 10.1177/1077800408318314. [ CrossRef ] [ Google Scholar ]
  • Nespor J. The afterlife of “teachers’ beliefs”: Qualitative methodology and the textline. Qualitative Inquiry. 2012; 18 (5):449–460. doi: 10.1177/1077800412439530. [ CrossRef ] [ Google Scholar ]
  • Piekkari R, Welch C, Paavilainen E. The case study as disciplinary convention: Evidence from international business journals. Organizational Research Methods. 2009; 12 (3):567–589. doi: 10.1177/1094428108319905. [ CrossRef ] [ Google Scholar ]
  • Ragin C. C, Becker H. S. What is a case?: Exploring the foundations of social inquiry. Cambridge: Cambridge University Press; 1992. [ Google Scholar ]
  • Roscigno C. I, Savage T. A, Kavanaugh K, Moro T. T, Kilpatrick S. J, Strassner H. T, et al. Divergent views of hope influencing communications between parents and hospital providers. Qualitative Health Research. 2012; 22 (9):1232–1246. doi: 10.1177/1049732312449210. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rosenberg J. P, Yates P. M. Schematic representation of case study research designs. Journal of Advanced Nursing. 2007; 60 (4):447–452. doi: 10.1111/j.1365-2648.2007.04385.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Rytterström P, Unosson M, Arman M. Care culture as a meaning- making process: A study of a mistreatment investigation. Qualitative Health Research. 2013; 23 :1179–1187. doi: 10.1177/1049732312470760. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M. Whatever happened to qualitative description? Research in Nursing & Health. 2000; 23 (4):334–340. doi: 10.1002/1098-240X. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M. What's in a name? Qualitative description revisited. Research in Nursing & Health. 2010; 33 (1):77–84. doi: 10.1002/nur.20362. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sandelowski M, Barroso J. Reading qualitative studies. International Journal of Qualitative Methods. 2002; 1 (1):74–108. [ Google Scholar ]
  • Snyder-Young D. “Here to tell her story”: Analyzing the autoethnographic performances of others. Qualitative Inquiry. 2011; 17 (10):943–951. doi: 10.1177/1077800411425149. [ CrossRef ] [ Google Scholar ]
  • Stake R. E. The case study method in social inquiry. Educational Researcher. 1978; 7 (2):5–8. [ Google Scholar ]
  • Stake R. E. The art of case study research. Thousand Oaks, CA: Sage; 1995. [ Google Scholar ]
  • Stake R. E. Case studies. In: Denzin N. K, Lincoln Y. S, editors. Strategies of qualitative inquiry. Thousand Oaks, CA: Sage; 1998. pp. 86–109. [ Google Scholar ]
  • Sumsion J. Opening up possibilities through team research: Investigating infants’ experiences of early childhood education and care. Qualitative Research. 2013; 14 (2):149–165. doi: 10.1177/1468794112468471.. [ CrossRef ] [ Google Scholar ]
  • Thomas G. Doing case study: Abduction not induction, phronesis not theory. Qualitative Inquiry. 2010; 16 (7):575–582. doi: 10.1177/1077800410372601. [ CrossRef ] [ Google Scholar ]
  • Thomas G. A typology for the case study in social science following a review of definition, discourse, and structure. Qualitative Inquiry. 2011; 17 (6):511–521. doi: 10.1177/1077800411409884. [ CrossRef ] [ Google Scholar ]
  • Tight M. The curious case of case study: A viewpoint. International Journal of Social Research Methodology. 2010; 13 (4):329–339. doi: 10.1080/13645570903187181. [ CrossRef ] [ Google Scholar ]
  • Wager E, Kleinert S. Responsible research publication: International standards for authors. A position statement developed at the 2nd World Conference on Research Integrity, Singapore, July 22–24, 2010. In: Mayer T, Steneck N, editors. Promoting research integrity in a global environment. Singapore: Imperial College Press/World Scientific; 2010a. pp. 309–316. [ Google Scholar ]
  • Wager E, Kleinert S. Responsible research publication: International standards for editors. A position statement developed at the 2nd World Conference on Research Integrity, Singapore, July 22–24, 2010. In: Mayer T, Steneck N, editors. Promoting research integrity in a global environment. Singapore: Imperial College Press/World Scientific; 2010b. pp. 317–328. [ Google Scholar ]
  • Webb C, Kevern J. Focus groups as a research method: A critique of some aspects of their use in nursing research. Journal of Advanced Nursing. 2000; 33 (6):798–805. doi: 10.1046/j.1365-2648.2001.01720.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wimpenny K, Savin-Baden M. Exploring and implementing participatory action synthesis. Qualitative Inquiry. 2012; 18 (8):689–698. doi: 10.1177/1077800412452854. [ CrossRef ] [ Google Scholar ]
  • Yeh H.-Y. Boundaries, entities, and modern vegetarianism: Examining the emergence of the first vegetarian organization. Qualitative Inquiry. 2013; 19 (4):298–309. doi: 10.1177/1077800412471516. [ CrossRef ] [ Google Scholar ]
  • Yin R. K. Enhancing the quality of case studies in health services research. Health Services Research. 1999; 34 (5 Pt 2):1209–1224. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Yin R. K. Case study research: Design and methods. 4th ed. Thousand Oaks, CA: Sage; 2009. [ Google Scholar ]
  • Yin R. K. Applications of case study research. 3rd ed. Thousand Oaks, CA: Sage; 2012. [ Google Scholar ]
  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Landscape Art and Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • Gender and Sexuality in Art
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Critical Care Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Study and Communication Skills in Life Sciences
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Audio Processing
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist and Conservationist Organizations (Environmental Science)
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Pollution and Threats to the Environment (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Decision Theory
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Political Methodology

  • < Previous chapter
  • Next chapter >

The Oxford Handbook of Political Methodology

28 Case Selection for Case‐Study Analysis: Qualitative and Quantitative Techniques

John Gerring is Professor of Political Science, Boston University.

  • Published: 02 September 2009
  • Cite Icon Cite
  • Permissions Icon Permissions

This article presents some guidance by cataloging nine different techniques for case selection: typical, diverse, extreme, deviant, influential, crucial, pathway, most similar, and most different. It also indicates that if the researcher is starting from a quantitative database, then methods for finding influential outliers can be used. In particular, the article clarifies the general principles that might guide the process of case selection in case-study research. Cases are more or less representative of some broader phenomenon and, on that score, may be considered better or worse subjects for intensive analysis. The article then draws attention to two ambiguities in case-selection strategies in case-study research. The first concerns the admixture of several case-selection strategies. The second concerns the changing status of a case as a study proceeds. Some case studies follow only one strategy of case selection.

Case ‐study analysis focuses on one or several cases that are expected to provide insight into a larger population. This presents the researcher with a formidable problem of case selection: Which cases should she or he choose?

In large‐sample research, the task of case selection is usually handled by some version of randomization. However, in case‐study research the sample is small (by definition) and this makes random sampling problematic, for any given sample may be wildly unrepresentative. Moreover, there is no guarantee that a few cases, chosen randomly, will provide leverage into the research question of interest.

In order to isolate a sample of cases that both reproduces the relevant causal features of a larger universe (representativeness) and provides variation along the dimensions of theoretical interest (causal leverage), case selection for very small samples must employ purposive (nonrandom) selection procedures. Nine such methods are discussed in this chapter, each of which may be identified with a distinct case‐study “type:” typical, diverse, extreme, deviant, influential, crucial, pathway, most‐similar , and most‐different . Table 28.1 summarizes each type, including its general definition, a technique for locating it within a population of potential cases, its uses, and its probable representativeness.

While each of these techniques is normally practiced on one or several cases (the diverse, most‐similar, and most‐different methods require at least two), all may employ additional cases—with the proviso that, at some point, they will no longer offer an opportunity for in‐depth analysis and will thus no longer be “case studies” in the usual sense ( Gerring 2007 , ch. 2 ). It will also be seen that small‐ N case‐selection procedures rest, at least implicitly, upon an analysis of a larger population of potential cases (as does randomization). The case(s) identified for intensive study is chosen from a population and the reasons for this choice hinge upon the way in which it is situated within that population. This is the origin of the terminology—typical, diverse, extreme, et al. It follows that case‐selection procedures in case‐study research may build upon prior cross‐case analysis and that they depend, at the very least, upon certain assumptions about the broader population.

In certain circumstances, the case‐selection procedure may be structured by a quantitative analysis of the larger population. Here, several caveats must be satisfied. First, the inference must pertain to more than a few dozen cases; otherwise, statistical analysis is problematic. Second, relevant data must be available for that population, or a significant sample of that population, on key variables, and the researcher must feel reasonably confident in the accuracy and conceptual validity of these variables. Third, all the standard assumptions of statistical research (e.g. identification, specification, robustness) must be carefully considered, and wherever possible, tested. I shall not dilate further on these familiar issues except to warn the researcher against the unreflective use of statistical techniques. 1 When these requirements are not met, the researcher must employ a qualitative approach to case selection.

The point of this chapter is to elucidate general principles that might guide the process of case selection in case‐study research, building upon earlier work by Harry Eckstein, Arend Lijphart, and others. Sometimes, these principles can be applied in a quantitative framework and sometimes they are limited to a qualitative framework. In either case, the logic of case selection remains quite similar, whether practiced in small‐ N or large‐ N contexts.

Before we begin, a bit of notation is necessary. In this chapter “ N ” refers to cases, not observations. Here, I am concerned primarily with causal inference, rather than inferences that are descriptive or predictive in nature. Thus, all hypotheses involve at least one independent variable ( X ) and one dependent variable ( Y ). For convenience, I shall label the causal factor of special theoretical interest X   1 , and the control variable, or vector of controls (if there are any), X   2 . If the writer is concerned to explain a puzzling outcome, but has no preconceptions about its causes, then the research will be described as Y‐centered . If a researcher is concerned to investigate the effects of a particular cause, with no preconceptions about what these effects might be, the research will be described as X‐centered . If a researcher is concerned to investigate a particular causal relationship, the research will be described as X   1 / Y‐centered , for it connects a particular cause with a particular outcome. 2   X ‐ or Y ‐centered research is exploratory; its purpose is to generate new hypotheses. X   1 / Y‐centered research, by contrast, is confirmatory/disconfirmatory; its purpose is to test an existing hypothesis.

1 Typical Case

In order for a focused case study to provide insight into a broader phenomenon it must be representative of a broader set of cases. It is in this context that one may speak of a typical‐case approach to case selection. The typical case exemplifies what is considered to be a typical set of values, given some general understanding of a phenomenon. By construction, the typical case is also a representative case.

Some typical cases serve an exploratory role. Here, the author chooses a case based upon a set of descriptive characteristics and then probes for causal relationships. Robert and Helen Lynd (1929/1956) selected a single city “to be as representative as possible of contemporary American life.” Specifically, they were looking for a city with

1) a temperate climate; 2) a sufficiently rapid rate of growth to ensure the presence of a plentiful assortment of the growing pains accompanying contemporary social change; 3) an industrial culture with modern, high‐speed machine production; 4) the absence of dominance of the city's industry by a single plant (i.e., not a one‐industry town); 5) a substantial local artistic life to balance its industrial activity …; and 6) the absence of any outstanding peculiarities or acute local problems which would mark the city off from the midchannel sort of American community. ( Lynd and Lynd 1929/1956 , quoted in Yin 2004 , 29–30)

After examining a number of options the Lynds decided that Muncie, Indiana, was more representative than, or at least as representative as, other midsized cities in America, thus qualifying as a typical case.

This is an inductive approach to case selection. Note that typicality may be understood according to the mean, median, or mode on a particular dimension; there may be multiple dimensions (as in the foregoing example); and each may be differently weighted (some dimensions may be more important than others). Where the selection criteria are multidimensional and a large sample of potential cases is in play, some form of factor analysis may be useful in identifying the most‐typical case(s).

However, the more common employment of the typical‐case method involves a causal model of some phenomenon of theoretical interest. Here, the researcher has identified a particular outcome ( Y ), and perhaps a specific X   1 / Y hypothesis, which she wishes to investigate. In order to do so, she looks for a typical example of that causal relationship. Intuitively, one imagines that a case selected according to the mean values of all parameters must be a typical case relative to some causal relationship. However, this is by no means assured.

Suppose that the Lynds were primarily interested in explaining feelings of trust/distrust among members of different social classes (one of the implicit research goals of the Middletown study). This outcome is likely to be affected by many factors, only some of which are included in their six selection criteria. So choosing cases with respect to a causal hypothesis involves, first of all, identifying the relevant parameters. It involves, secondly, the selection of a case that has a “typical” value relative to the overall causal model; it is well explained. Cases with untypical scores on a particular dimension (e.g. very high or very low) may still be typical examples of a causal relationship. Indeed, they may be more typical than cases whose values lie close to the mean. Thus, a descriptive understanding of typicality is quite different from a causal understanding of typicality. Since it is the latter version that is more common, I shall adopt this understanding of typicality in the remainder of the discussion.

From a qualitative perspective, causal typicality involves the selection of a case that conforms to expectations about some general causal relationship. It performs as expected. In a quantitative setting, this notion is measured by the size of a case's residual in a large‐ N cross‐case model. Typical cases lie on or near the regression line; their residuals are small. Insofar as the model is correctly specified, the size of a case's residual (i.e. the number of standard deviations that separate the actual value from the fitted value) provides a helpful clue to how representative that case is likely to be. “Outliers” are unlikely to be representative of the target population.

Of course, just because a case has a low residual does not necessarily mean that it is a representative case (with respect to the causal relationship of interest). Indeed, the issue of case representativeness is an issue that can never be definitively settled. When one refers to a “typical case” one is saying, in effect, that the probability of a case's representativeness is high, relative to other cases. This test of typicality is misleading if the statistical model is mis‐specified. And it provides little insurance against errors that are purely stochastic. A case may lie directly on the regression line but still be, in some important respect, atypical. For example, it might have an odd combination of values; the interaction of variables might be different from other cases; or additional causal mechanisms might be at work. For this reason, it is important to supplement a statistical analysis of cases with evidence drawn from the case in question (the case study itself) and with our deductive knowledge of the world. One should never judge a case solely by its residual. Yet, all other things being equal, a case with a low residual is less likely to be unusual than a case with a high residual, and to this extent the method of case selection outlined here may be a helpful guide to case‐study researchers faced with a large number of potential cases.

By way of conclusion, it should be noted that because the typical case embodies a typical value on some set of causally relevant dimensions, the variance of interest to the researcher must lie within that case. Specifically, the typical case of some phenomenon may be helpful in exploring causal mechanisms and in solving identification problems (e.g. endogeneity between X   1 and Y , an omitted variable that may account for X   1   and Y , or some other spurious causal association). Depending upon the results of the case study, the author may confirm an existing hypothesis, disconfirm that hypothesis, or reframe it in a way that is consistent with the findings of the case study. These are the uses of the typical‐case study.

2 Diverse Cases

A second case‐selection strategy has as its primary objective the achievement of maximum variance along relevant dimensions. I refer to this as a diverse‐case method. For obvious reasons, this method requires the selection of a set of cases—at minimum, two—which are intended to represent the full range of values characterizing X   1 , Y , or some particular X   1 / Y relationship. 3

Where the individual variable of interest is categorical (on/off, red/black/blue, Jewish/Protestant/Catholic), the identification of diversity is readily apparent. The investigator simply chooses one case from each category. For a continuous variable, the choices are not so obvious. However, the researcher usually chooses both extreme values (high and low), and perhaps the mean or median as well. The researcher may also look for break‐points in the distribution that seem to correspond to categorical differences among cases. Or she may follow a theoretical hunch about which threshold values count, i.e. which are likely to produce different values on Y .

Another sort of diverse case takes account of the values of multiple variables (i.e. a vector), rather than a single variable. If these variables are categorical, the identification of causal types rests upon the intersection of each category. Two dichotomous variables produce a matrix with four cells. Three trichotomous variables produce a matrix of eight cells. And so forth. If all variables are deemed relevant to the analysis, the selection of diverse cases mandates the selection of one case drawn from within each cell. Let us say that an outcome is thought to be affected by sex, race (black/white), and marital status. Here, a diverse‐case strategy of case selection would identify one case within each of these intersecting cells—a total of eight cases. Things become slightly more complicated when one or more of the factors is continuous, rather than categorical. Here, the diversity of case values do not fall neatly into cells. Rather, these cells must be created by fiat—e.g. high, medium, low.

It will be seen that where multiple variables are under consideration, the logic of diverse‐case analysis rests upon the logic of typological theorizing—where different combinations of variables are assumed to have effects on an outcome that vary across types ( Elman 2005 ; George and Bennett 2005 , 235; Lazarsfeld and Barton 1951 ). George and Smoke, for example, wish to explore different types of deterrence failure—by “fait accompli,” by “limited probe,” and by “controlled pressure.” Consequently, they wish to find cases that exemplify each type of causal mechanism. 4

Diversity may thus refer to a range of variation on X or Y , or to a particular combination of causal factors (with or without a consideration of the outcome). In each instance, the goal of case selection is to capture the full range of variation along the dimension(s) of interest.

Since diversity can mean many things, its employment in a large‐ N setting is necessarily dependent upon how this key term is defined. If it is understood to pertain only to a single variable ( X   1 or Y ), then the task is fairly simple. A categorical variable mandates the choice of at least one case from each category—two if dichotomous, three if trichotomous, and so forth. A continuous variable suggests the choice of at least one “high” and “low” value, and perhaps one drawn from the mean or median. But other choices might also be justified, according to one's hunch about the underlying causal relationship or according to natural thresholds found in the data, which may be grouped into discrete categories. Single‐variable traits are usually easy to discover in a large‐ N setting through descriptive statistics or through visual inspection of the data.

Where diversity refers to particular combinations of variables, the relevant cross‐ case technique is some version of stratified random sampling (in a probabilistic setting) or Qualitative Comparative Analysis (in a deterministic setting) ( Ragin 2000 ). If the researcher suspects that a causal relationship is affected not only by combinations of factors but also by their sequencing , then the technique of analysis must incorporate temporal elements ( Abbott 2001 ; Abbott and Forrest 1986 ; Abbott and Tsay 2000 ). Thus, the method of identifying causal types rests upon whatever method of identifying causal relationships is employed in the large‐ N sample.

Note that the identification of distinct case types is intended to identify groups of cases that are internally homogeneous (in all respects that might affect the causal relationship of interest). Thus, the choice of cases within each group should not be problematic, and may be accomplished through random sampling or purposive case selection. However, if there is suspected diversity within each category, then measures should be taken to assure that the chosen cases are typical of each category. A case study should not focus on an atypical member of a subgroup.

Indeed, considerations of diversity and typicality often go together. Thus, in a study of globalization and social welfare systems, Duane Swank (2002) first identifies three distinctive groups of welfare states: “universalistic” (social democratic), “corporatist conservative,” and “liberal.” Next, he looks within each group to find the most‐typical cases. He decides that the Nordic countries are more typical of the universalistic model than the Netherlands since the latter has “some characteristics of the occupationally based program structure and a political context of Christian Democratic‐led governments typical of the corporatist conservative nations” ( Swank 2002 , 11; see also Esping‐Andersen 1990 ). Thus, the Nordic countries are chosen as representative cases within the universalistic case type, and are accompanied in the case‐study portion of his analysis by other cases chosen to represent the other welfare state types (corporatist conservative and liberal).

Evidently, when a sample encompasses a full range of variation on relevant parameters one is likely to enhance the representativeness of that sample (relative to some population). This is a distinct advantage. Of course, the inclusion of a full range of variation may distort the actual distribution of cases across this spectrum. If there are more “high” cases than “low” cases in a population and the researcher chooses only one high case and one low case, the resulting sample of two is not perfectly representative. Even so, the diverse‐case method probably has stronger claims to representativeness than any other small‐ N sample (including the standalone typical case). The selection of diverse cases has the additional advantage of introducing variation on the key variables of interest. A set of diverse cases is, by definition, a set of cases that encompasses a range of high and low values on relevant dimensions. There is, therefore, much to recommend this method of case selection. I suspect that these advantages are commonly understood and are applied on an intuitive level by case‐study researchers. However, the lack of a recognizable name—and an explicit methodological defense—has made it difficult for case‐study researchers to utilize this method of case selection, and to do so in an explicit and self‐conscious fashion. Neologism has its uses.

3 Extreme Case

The extreme‐case method selects a case because of its extreme value on an independent ( X   1 ) or dependent ( Y ) variable of interest. Thus, studies of domestic violence may choose to focus on extreme instances of abuse ( Browne 1987 ). Studies of altruism may focus on those rare individuals who risked their lives to help others (e.g. Holocaust resisters) ( Monroe 1996 ). Studies of ethnic politics may focus on the most heterogeneous societies (e.g. Papua New Guinea) in order to better understand the role of ethnicity in a democratic setting ( Reilly 2000–1 ). Studies of industrial policy often focus on the most successful countries (i.e. the NICS) ( Deyo 1987 ). And so forth. 5

Often an extreme case corresponds to a case that is considered to be prototypical or paradigmatic of some phenomena of interest. This is because concepts are often defined by their extremes, i.e. their ideal types. Italian Fascism defines the concept of Fascism, in part, because it offered the most extreme example of that phenomenon. However, the methodological value of this case, and others like it, derives from its extremity (along some dimension of interest), not its theoretical status or its status in the literature on a subject.

The notion of “extreme” may now be defined more precisely. An extreme value is an observation that lies far away from the mean of a given distribution. This may be measured (if there are sufficient observations) by a case's “Z score”—the number of standard deviations between a case and the mean value for that sample. Extreme cases have high Z scores, and for this reason may serve as useful subjects for intensive analysis.

For a continuous variable, the distance from the mean may be in either direction (positive or negative). For a dichotomous variable (present/absent), extremeness may be interpreted as unusual . If most cases are positive along a given dimension, then a negative case constitutes an extreme case. If most cases are negative, then a positive case constitutes an extreme case. It should be clear that researchers are not simply concerned with cases where something “happened,” but also with cases where something did not. It is the rareness of the value that makes a case valuable, in this context, not its positive or negative value. 6 Thus, if one is studying state capacity, a case of state failure is probably more informative than a case of state endurance simply because the former is more unusual. Similarly, if one is interested in incest taboos a culture where the incest taboo is absent or weak is probably more useful than a culture where it is present or strong. Fascism is more important than nonfascism. And so forth. There is a good reason, therefore, why case studies of revolution tend to focus on “revolutionary” cases. Theda Skocpol (1979) had much more to learn from France than from Austro‐Hungary since France was more unusual than Austro‐Hungary within the population of nation states that Skocpol was concerned to explain. The reason is quite simple: There are fewer revolutionary cases than nonrevolutionary cases; thus, the variation that we explore as a clue to causal relationships is encapsulated in these cases, against a background of nonrevolutionary cases.

Note that the extreme‐case method of case selection appears to violate the social science folk wisdom warning us not to “select on the dependent variable.” 7 Selecting cases on the dependent variable is indeed problematic if a number of cases are chosen, all of which lie on one end of a variable's spectrum (they are all positive or negative), and if the researcher then subjects this sample to cross‐case analysis as if it were representative of a population. 8 Results for this sort of analysis would almost assuredly be biased. Moreover, there will be little variation to explain since the values of each case are explicitly constrained.

However, this is not the proper employment of the extreme‐case method. (It is more appropriately labeled an extreme‐ sample method.) The extreme‐case method actually refers back to a larger sample of cases that lie in the background of the analysis and provide a full range of variation as well as a more representative picture of the population. It is a self‐conscious attempt to maximize variance on the dimension of interest, not to minimize it. If this population of cases is well understood— either through the author's own cross‐case analysis, through the work of others, or through common sense—then a researcher may justify the selection of a single case exemplifying an extreme value for within‐case analysis. If not, the researcher may be well advised to follow a diverse‐case method, as discussed above.

By way of conclusion, let us return to the problem of representativeness. It will be seen that an extreme case may be typical or deviant. There is simply no way to tell because the researcher has not yet specified an X   1 / Y causal proposition. Once such a causal proposition has been specified one may then ask whether the case in question is similar to some population of cases in all respects that might affect the X   1 / Y relationship of interest (i.e. unit homogeneous). It is at this point that it becomes possible to say, within the context of a cross‐case statistical model, whether a case lies near to, or far from, the regression line. However, this sort of analysis means that the researcher is no longer pursuing an extreme‐case method. The extreme‐case method is purely exploratory—a way of probing possible causes of Y , or possible effects of X , in an open‐ended fashion. If the researcher has some notion of what additional factors might affect the outcome of interest, or of what relationship the causal factor of interest might have with Y , then she ought to pursue one of the other methods explored in this chapter. This also implies that an extreme‐case method may transform into a different kind of approach as a study evolves; that is, as a more specific hypothesis comes to light. Useful extreme cases at the outset of a study may prove less useful at a later stage of analysis.

4 Deviant Case

The deviant‐case method selects that case(s) which, by reference to some general understanding of a topic (either a specific theory or common sense), demonstrates a surprising value. It is thus the contrary of the typical case. Barbara Geddes (2003) notes the importance of deviant cases in medical science, where researchers are habitually focused on that which is “pathological” (according to standard theory and practice). The New England Journal of Medicine , one of the premier journals of the field, carries a regular feature entitled Case Records of the Massachusetts General Hospital. These articles bear titles like the following: “An 80‐Year‐Old Woman with Sudden Unilateral Blindness” or “A 76‐Year‐Old Man with Fever, Dyspnea, Pulmonary Infiltrates, Pleural Effusions, and Confusion.” 9 Another interesting example drawn from the field of medicine concerns the extensive study now devoted to a small number of persons who seem resistant to the AIDS virus ( Buchbinder and Vittinghoff 1999 ; Haynes, Pantaleo, and Fauci 1996 ). Why are they resistant? What is different about these people? What can we learn about AIDS in other patients by observing people who have built‐in resistance to this disease?

Likewise, in psychology and sociology case studies may be comprised of deviant (in the social sense) persons or groups. In economics, case studies may consist of countries or businesses that overperform (e.g. Botswana; Microsoft) or underperform (e.g. Britain through most of the twentieth century; Sears in recent decades) relative to some set of expectations. In political science, case studies may focus on countries where the welfare state is more developed (e.g. Sweden) or less developed (e.g. the United States) than one would expect, given a set of general expectations about welfare state development. The deviant case is closely linked to the investigation of theoretical anomalies. Indeed, to say deviant is to imply “anomalous.” 10

Note that while extreme cases are judged relative to the mean of a single distribution (the distribution of values along a single variable), deviant cases are judged relative to some general model of causal relations. The deviant‐case method selects cases which, by reference to some (presumably) general relationship, demonstrate a surprising value. They are “deviant” in that they are poorly explained by the multivariate model. The important point is that deviant‐ness can only be assessed relative to the general (quantitative or qualitative) model. This means that the relative deviant‐ness of a case is likely to change whenever the general model is altered. For example, the United States is a deviant welfare state when this outcome is gauged relative to societal wealth. But it is less deviant—and perhaps not deviant at all—when certain additional (political and societal) factors are included in the model, as discussed in the epilogue. Deviance is model dependent. Thus, when discussing the concept of the deviant case it is helpful to ask the following question: Relative to what general model (or set of background factors) is Case A deviant?

Conceptually, we have said that the deviant case is the logical contrary of the typical case. This translates into a directly contrasting statistical measurement. While the typical case is one with a low residual (in some general model of causal relations), a deviant case is one with a high residual. This means, following our previous discussion, that the deviant case is likely to be an un representative case, and in this respect appears to violate the supposition that case‐study samples should seek to reproduce features of a larger population.

However, it must be borne in mind that the primary purpose of a deviant‐case analysis is to probe for new—but as yet unspecified—explanations. (If the purpose is to disprove an extant theory I shall refer to the study as crucial‐case, as discussed below.) The researcher hopes that causal processes identified within the deviant case will illustrate some causal factor that is applicable to other (more or less deviant) cases. This means that a deviant‐case study usually culminates in a general proposition, one that may be applied to other cases in the population. Once this general proposition has been introduced into the overall model, the expectation is that the chosen case will no longer be an outlier. Indeed, the hope is that it will now be typical , as judged by its small residual in the adjusted model. (The exception would be a circumstance in which a case's outcome is deemed to be “accidental,” and therefore inexplicable by any general model.)

This feature of the deviant‐case study should help to resolve questions about its representativeness. Even if it is not possible to measure the new causal factor (and thus to introduce it into a large‐ N cross‐case model), it may still be plausible to assert (based on general knowledge of the phenomenon) that the chosen case is representative of a broader population.

5 Influential Case

Sometimes, the choice of a case is motivated solely by the need to verify the assumptions behind a general model of causal relations. Here, the analyst attempts to provide a rationale for disregarding a problematic case or a set of problematic cases. That is to say, she attempts to show why apparent deviations from the norm are not really deviant, or do not challenge the core of the theory, once the circumstances of the special case or cases are fully understood. A cross‐case analysis may, after all, be marred by several classes of problems including measurement error, specification error, errors in establishing proper boundaries for the inference (the scope of the argument), and stochastic error (fluctuations in the phenomenon under study that are treated as random, given available theoretical resources). If poorly fitting cases can be explained away by reference to these kinds of problems, then the theory of interest is that much stronger. This sort of deviant‐case analysis answers the question, “What about Case A (or cases of type A)? How does that, seemingly disconfirming, case fit the model?”

Because its underlying purpose is different from the usual deviant‐case study, I offer a new term for this method. The influential case is a case that casts doubt upon a theory, and for that reason warrants close inspection. This investigation may reveal, after all, that the theory is validated—perhaps in some slightly altered form. In this guise, the influential case is the “case that proves the rule.” In other instances, the influential‐case analysis may contribute to disconfirming, or reconceptualizing, a theory. The key point is that the value of the case is judged relative to some extant cross‐case model.

A simple version of influential‐case analysis involves the confirmation of a key case's score on some critical dimension. This is essentially a question of measurement. Sometimes cases are poorly explained simply because they are poorly understood. A close examination of a particular context may reveal that an apparently falsifying case has been miscoded. If so, the initial challenge presented by that case to some general theory has been obviated.

However, the more usual employment of the influential‐case method culminates in a substantive reinterpretation of the case—perhaps even of the general model. It is not just a question of measurement. Consider Thomas Ertman's (1997) study of state building in Western Europe, as summarized by Gerardo Munck. This study argues

that the interaction of a) the type of local government during the first period of statebuilding, with b) the timing of increases in geopolitical competition, strongly influences the kind of regime and state that emerge. [Ertman] tests this hypothesis against the historical experience of Europe and finds that most countries fit his predictions. Denmark, however, is a major exception. In Denmark, sustained geopolitical competition began relatively late and local government at the beginning of the statebuilding period was generally participatory, which should have led the country to develop “patrimonial constitutionalism.” But in fact, it developed “bureaucratic absolutism.” Ertman carefully explores the process through which Denmark came to have a bureaucratic absolutist state and finds that Denmark had the early marks of a patrimonial constitutionalist state. However, the country was pushed off this developmental path by the influence of German knights, who entered Denmark and brought with them German institutions of local government. Ertman then traces the causal process through which these imported institutions pushed Denmark to develop bureaucratic absolutism, concluding that this development was caused by a factor well outside his explanatory framework. ( Munck 2004 , 118)

Ertman's overall framework is confirmed insofar as he has been able to show, by an in‐depth discussion of Denmark, that the causal processes stipulated by the general theory hold even in this apparently disconfirming case. Denmark is still deviant, but it is so because of “contingent historical circumstances” that are exogenous to the theory ( Ertman 1997 , 316).

Evidently, the influential‐case analysis is similar to the deviant‐case analysis. Both focus on outliers. However, as we shall see, they focus on different kinds of outliers. Moreover, the animating goals of these two research designs are quite different. The influential‐case study begins with the aim of confirming a general model, while the deviant‐case study has the aim of generating a new hypothesis that modifies an existing general model. The confusion stems from the fact that the same case study may fulfill both objectives—qualifying a general model and, at the same time, confirming its core hypothesis.

Thus, in their study of Roberto Michels's “iron law of oligarchy,” Lipset, Trow, and Coleman (1956) choose to focus on an organization—the International Typographical Union—that appears to violate the central presupposition. The ITU, as noted by one of the authors, has “a long‐term two‐party system with free elections and frequent turnover in office” and is thus anything but oligarchic ( Lipset 1959 , 70). As such, it calls into question Michels's grand generalization about organizational behavior. The authors explain this curious result by the extraordinarily high level of education among the members of this union. Michels's law is shown to be true for most organizations, but not all. It is true, with qualifications. Note that the respecification of the original model (in effect, Lipset, Trow, and Coleman introduce a new control variable or boundary condition) involves the exploration of a new hypothesis. In this instance, therefore, the use of an influential case to confirm an existing theory is quite similar to the use of a deviant case to explore a new theory.

In a quantitative idiom, influential cases are those that, if counterfactually assigned a different value on the dependent variable, would most substantially change the resulting estimates. They may or may not be outliers (high‐residual cases). Two quantitative measures of influence are commonly applied in regression diagnostics ( Belsey, Kuh, and Welsch 2004 ). The first, often referred to as the leverage of a case, derives from what is called the hat matrix . Based solely on each case's scores on the independent variables, the hat matrix tells us how much a change in (or a measurement error on) the dependent variable for that case would affect the overall regression line. The second is Cook's distance , a measure of the extent to which the estimates of all the parameters would change if a given case were omitted from the analysis. Cases with a large leverage or Cook's distance contribute quite a lot to the inferences drawn from a cross‐case analysis. In this sense, such cases are vital for maintaining analytic conclusions. Discovering a significant measurement error on the dependent variable or an important omitted variable for such a case may dramatically revise estimates of the overall relationships. Hence, it may be quite sensible to select influential cases for in‐depth study.

Note that the use of an influential‐case strategy of case selection is limited to instances in which a researcher has reason to be concerned that her results are being driven by one or a few cases. This is most likely to be true in small to moderate‐sized samples. Where N is very large—greater than 1,000, let us say—it is extremely unlikely that a small set of cases (much less an individual case) will play an “influential” role. Of course, there may be influential sets of cases, e.g. countries within a particular continent or cultural region, or persons of Irish extraction. Sets of influential observations are often problematic in a time‐series cross‐section data‐set where each unit (e.g. country) contains multiple observations (through time), and hence may have a strong influence on aggregate results. Still, the general rule is: the larger the sample, the less important individual cases are likely to be and, hence, the less likely a researcher is to use an influential‐case approach to case selection.

6 Crucial Case

Of all the extant methods of case selection perhaps the most storied—and certainly the most controversial—is the crucial‐case method, introduced to the social science world several decades ago by Harry Eckstein. In his seminal essay, Eckstein (1975 , 118) describes the crucial case as one “that must closely fit a theory if one is to have confidence in the theory's validity, or, conversely, must not fit equally well any rule contrary to that proposed.” A case is crucial in a somewhat weaker—but much more common—sense when it is most, or least, likely to fulfill a theoretical prediction. A “most‐likely” case is one that, on all dimensions except the dimension of theoretical interest, is predicted to achieve a certain outcome, and yet does not. It is therefore used to disconfirm a theory. A “least‐likely” case is one that, on all dimensions except the dimension of theoretical interest, is predicted not to achieve a certain outcome, and yet does so. It is therefore used to confirm a theory. In all formulations, the crucial‐case offers a most‐difficult test for an argument, and hence provides what is perhaps the strongest sort of evidence possible in a nonexperimental, single‐case setting.

Since the publication of Eckstein's influential essay, the crucial‐case approach has been claimed in a multitude of studies across several social science disciplines and has come to be recognized as a staple of the case‐study method. 11 Yet the idea of any single case playing a crucial (or “critical”) role is not widely accepted among most methodologists (e.g. Sekhon 2004 ). (Even its progenitor seems to have had doubts.)

Let us begin with the confirmatory (a.k.a. least‐likely) crucial case. The implicit logic of this research design may be summarized as follows. Given a set of facts, we are asked to contemplate the probability that a given theory is true. While the facts matter, to be sure, the effectiveness of this sort of research also rests upon the formal properties of the theory in question. Specifically, the degree to which a theory is amenable to confirmation is contingent upon how many predictions can be derived from the theory and on how “risky” each individual prediction is. In Popper's (1963 , 36) words, “Confirmations should count only if they are the result of risky predictions ; that is to say, if, unenlightened by the theory in question, we should have expected an event which was incompatible with the theory—and event which would have refuted the theory. Every ‘good’ scientific theory is a prohibition; it forbids certain things to happen. The more a theory forbids, the better it is” (see also Popper 1934/1968 ). A risky prediction is therefore one that is highly precise and determinate, and therefore unlikely to be achieved by the product of other causal factors (external to the theory of interest) or through stochastic processes. A theory produces many such predictions if it is fully elaborated, issuing predictions not only on the central outcome of interest but also on specific causal mechanisms, and if it is broad in purview. (The notion of riskiness may also be conceptualized within the Popperian lexicon as degrees of falsifiability .)

These points can also be articulated in Bayesian terms. Colin Howson and Peter Urbach explain: “The degree to which h [a hypothesis] is confirmed by e [a set of evidence] depends … on the extent to which P(eČh) exceeds P (e) , that is, on how much more probable e is relative to the hypothesis and background assumptions than it is relative just to background assumptions.” Again, “confirmation is correlated with how much more probable the evidence is if the hypothesis is true than if it is false” ( Howson and Urlbach 1989 , 86). Thus, the stranger the prediction offered by a theory—relative to what we would normally expect—the greater the degree of confirmation that will be afforded by the evidence. As an intuitive example, Howson and Urbach (1989 , 86) offer the following:

If a soothsayer predicts that you will meet a dark stranger sometime and you do in fact, your faith in his powers of precognition would not be much enhanced: you would probably continue to think his predictions were just the result of guesswork. However, if the prediction also gave the correct number of hairs on the head of that stranger, your previous scepticism would no doubt be severely shaken.

While these Popperian/Bayesian notions 12 are relevant to all empirical research designs, they are especially relevant to case‐study research designs, for in these settings a single case (or, at most, a small number of cases) is required to bear a heavy burden of proof. It should be no surprise, therefore, that Popper's idea of “riskiness” was to be appropriated by case‐study researchers like Harry Eckstein to validate the enterprise of single‐case analysis. (Although Eckstein does not cite Popper the intellectual lineage is clear.) Riskiness, here, is analogous to what is usually referred to as a “most‐ difficult” research design, which in a case‐study research design would be understood as a “least‐likely” case. Note also that the distinction between a “must‐fit” case and a least‐likely case—that, in the event, actually does fit the terms of a theory—is a matter of degree. Cases are more or less crucial for confirming theories. The point is that, in some circumstances, a paucity of empirical evidence may be compensated by the riskiness of the theory.

The crucial‐case research design is, perforce, a highly deductive enterprise; much depends on the quality of the theory under investigation. It follows that the theories most amenable to crucial‐case analysis are those which are lawlike in their precision, degree of elaboration, consistency, and scope. The more a theory attains the status of a causal law, the easier it will be to confirm, or to disconfirm, with a single case. Indeed, risky predictions are common in natural science fields such as physics, which in turn served as the template for the deductive‐nomological (“covering‐law”) model of science that influenced Eckstein and others in the postwar decades (e.g. Hempel 1942 ).

A frequently cited example is the first important empirical demonstration of the theory of relativity, which took the form of a single‐event prediction on the occasion of the May 29, 1919, solar eclipse ( Eckstein 1975 ; Popper 1963 ). Stephen Van Evera (1997 , 66–7) describes the impact of this prediction on the validation of Einstein's theory.

Einstein's theory predicted that gravity would bend the path of light toward a gravity source by a specific amount. Hence it predicted that during a solar eclipse stars near the sun would appear displaced—stars actually behind the sun would appear next to it, and stars lying next to the sun would appear farther from it—and it predicted the amount of apparent displacement. No other theory made these predictions. The passage of this one single‐case‐study test brought the theory wide acceptance because the tested predictions were unique—there was no plausible competing explanation for the predicted result—hence the passed test was very strong.

The strength of this test is the extraordinary fit between the theory and a set of facts found in a single case, and the corresponding lack of fit between all other theories and this set of facts. Einstein offered an explanation of a particular set of anomalous findings that no other existing theory could make sense of. Of course, one must assume that there was no—or limited—measurement error. And one must assume that the phenomenon of interest is largely invariant; light does not bend differently at different times and places (except in ways that can be understood through the theory of relativity). And one must assume, finally, that the theory itself makes sense on other grounds (other than the case of special interest); it is a plausible general theory. If one is willing to accept these a priori assumptions, then the 1919 “case study” provides a very strong confirmation of the theory. It is difficult to imagine a stronger proof of the theory from within an observational (nonexperimental) setting.

In social science settings, by contrast, one does not commonly find single‐case studies offering knockout evidence for a theory. This is, in my view, largely a product of the looseness (the underspecification) of most social science theories. George and Bennett point out that while the thesis of the democratic peace is as close to a “law” as social science has yet seen, it cannot be confirmed (or refuted) by looking at specific causal mechanisms because the causal pathways mandated by the theory are multiple and diverse. Under the circumstances, no single‐case test can offer strong confirmation of the theory ( George and Bennett 2005 , 209).

However, if one adopts a softer version of the crucial‐case method—the least‐likely (most difficult) case—then possibilities abound. Indeed, I suspect that, implicitly , most case‐study work that makes a positive argument focusing on a single case (without a corresponding cross‐case analysis) relies largely on the logic of the least‐ likely case. Rarely is this logic made explicit, except perhaps in a passing phrase or two. Yet the deductive logic of the “risky” prediction is central to the case‐study enterprise. Whether a case study is convincing or not often rests on the reader's evaluation of how strong the evidence for an argument might be, and this in turn—wherever cross‐ case evidence is limited and no manipulated treatment can be devised—rests upon an estimation of the degree of “fit” between a theory and the evidence at hand, as discussed.

Lily Tsai's (2007) investigation of governance at the village level in China employs several in‐depth case studies of villages which are chosen (in part) because of their least‐likely status relative to the theory of interest. Tsai's hypothesis is that villages with greater social solidarity (based on preexisting religious or familial networks) will develop a higher level of social trust and mutual obligation and, as a result, will experience better governance. Crucial cases, therefore, are villages that evidence a high level of social solidarity but which, along other dimensions, would be judged least likely to develop good governance, e.g. they are poor, isolated, and lack democratic institutions or accountability mechanisms from above. “Li Settlement,” in Fujian province, is such a case. The fact that this impoverished village nonetheless boasts an impressive set of infrastructural accomplishments such as paved roads with drainage ditches (a rarity in rural China) suggests that something rather unusual is going on here. Because her case is carefully chosen to eliminate rival explanations, Tsai's conclusions about the special role of social solidarity are difficult to gainsay. How else is one to explain this otherwise anomalous result? This is the strength of the least‐likely case, where all other plausible causal factors for an outcome have been minimized. 13

Jack Levy (2002 , 144) refers to this, evocatively, as a “Sinatra inference:” if it can make it here, it can make it anywhere (see also Khong 1992 , 49; Sagan 1995 , 49; Shafer 1988 , 14–6). Thus, if social solidarity has the hypothesized effect in Li Settlement it should have the same effect in more propitious settings (e.g. where there is greater economic surplus). The same implicit logic informs many case‐study analyses where the intent of the study is to confirm a hypothesis on the basis of a single case.

Another sort of crucial case is employed for the purpose of dis confirming a causal hypothesis. A central Popperian insight is that it is easier to disconfirm an inference than to confirm that same inference. (Indeed, Popper doubted that any inference could be fully confirmed, and for this reason preferred the term “corroborate.”) This is particularly true of case‐study research designs, where evidence is limited to one or several cases. The key proviso is that the theory under investigation must take a consistent (a.k.a. invariant, deterministic) form, even if its predictions are not terrifically precise, well elaborated, or broad.

As it happens, there are a fair number of invariant propositions floating around the social science disciplines (Goertz and Levy forthcoming; Goertz and Starr 2003 ). It used to be argued, for example, that political stability would occur only in countries that are relatively homogeneous, or where existing heterogeneities are mitigated by cross‐cutting cleavages ( Almond 1956 ; Bentley 1908/1967 ; Lipset 1960/1963 ; Truman 1951 ). Arend Lijphart's (1968) study of the Netherlands, a peaceful country with reinforcing social cleavages, is commonly viewed as refuting this theory on the basis of a single in‐depth case analysis. 14

Granted, it may be questioned whether presumed invariant theories are really invariant; perhaps they are better understood as probabilistic. Perhaps, that is, the theory of cross‐cutting cleavages is still true, probabilistically, despite the apparent Dutch exception. Or perhaps the theory is still true, deterministically, within a subset of cases that does not include the Netherlands. (This sort of claim seems unlikely in this particular instance, but it is quite plausible in many others.) Or perhaps the theory is in need of reframing; it is true, deterministically, but applies only to cross‐ cutting ethnic/racial cleavages, not to cleavages that are primarily religious. One can quibble over what it means to “disconfirm” a theory. The point is that the crucial case has, in all these circumstances, provided important updating of a theoretical prior.

Heretofore, I have treated causal factors as dichotomous. Countries have either reinforcing or cross‐cutting cleavages and they have regimes that are either peaceful or conflictual. Evidently, these sorts of parameters are often matters of degree. In this reading of the theory, cases are more or less crucial. Accordingly, the most useful—i.e. most crucial—case for Lijphart's purpose is one that has the most segregated social groups and the most peaceful and democratic track record. In these respects, the Netherlands was a very good choice. Indeed, the degree of disconfirmation offered by this case study is probably greater than the degree of disconfirmation that might have been provided by other cases such as India or Papua New Guinea—countries where social peace has not always been secure. The point is that where variables are continuous rather than dichotomous it is possible to evaluate potential cases in terms of their degree of crucialness .

Note that the crucial‐case method of case‐selection, whether employed in a confirmatory or disconfirmatory mode, cannot be employed in a large‐ N context. This is because an explicit cross‐case model would render the crucial‐case study redundant. Once one identifies the relevant parameters and the scores of all cases on those parameters, one has in effect constructed a cross‐case model that confirms or disconfirms the theory in question. The case study is thenceforth irrelevant, at least as a means of decisive confirmation or disconfirmation. 15 It remains highly relevant as a means of exploring causal mechanisms, of course. Yet, because this objective is quite different from that which is usually associated with the term, I enlist a new term for this technique.

7 Pathway Case

One of the most important functions of case‐study research is the elucidation of causal mechanisms. But which sort of case is most useful for this purpose? Although all case studies presumably shed light on causal mechanisms, not all cases are equally transparent. In situations where a causal hypothesis is clear and has already been confirmed by cross‐case analysis, researchers are well advised to focus on a case where the causal effect of X   1 on Y can be isolated from other potentially confounding factors ( X   2 ). I shall call this a pathway case to indicate its uniquely penetrating insight into causal mechanisms. In contrast to the crucial case, this sort of method is practicable only in circumstances where cross‐case covariational patterns are well studied and where the mechanism linking X   1 and Y remains dim. Because the pathway case builds on prior cross‐case analysis, the problem of case selection must be situated within that sample. There is no standalone pathway case.

The logic of the pathway case is clearest in situations of causal sufficiency—where a causal factor of interest, X   1 , is sufficient by itself (though perhaps not necessary) to account for Y 's value (0 or 1). The other causes of Y , about which we need make no assumptions, are designated as a vector, X   2 .

Note that wherever various causal factors are substitutable for one another, each factor is conceptualized (individually) as sufficient ( Braumoeller 2003 ). Thus, situations of causal equifinality presume causal sufficiency on the part of each factor or set of conjoint factors. An example is provided by the literature on democratization, which stipulates three main avenues of regime change: leadership‐initiated reform, a controlled opening to opposition, or the collapse of an authoritarian regime ( Colomer 1991 ). The case‐study format constrains us to analyze one at a time, so let us limit our scope to the first one—leadership‐initiated reform. So considered, a causal‐pathway case would be one with the following features: (a) democratization, (b) leadership‐initiated reform, (c) no controlled opening to the opposition, (d) no collapse of the previous authoritarian regime, and (e) no other extraneous factors that might affect the process of democratization. In a case of this type, the causal mechanisms by which leadership‐initiated reform may lead to democratization will be easiest to study. Note that it is not necessary to assume that leadership‐initiated reform always leads to democratization; it may or may not be a deterministic cause. But it is necessary to assume that leadership‐initiated reform can sometimes lead to democratization on its own (given certain background features).

Now let us move from these examples to a general‐purpose model. For heuristic purposes, let us presume that all variables in that model are dichotomous (coded as 0 or 1) and that the model is complete (all causes of Y are included). All causal relationships will be coded so as to be positive: X   1 and Y covary as do X   2 and Y . This allows us to visualize a range of possible combinations at a glance.

Recall that the pathway case is always focused, by definition, on a single causal factor, denoted X   1 . (The researcher's focus may shift to other causal factors, but may only focus on one causal factor at a time.) In this scenario, and regardless of how many additional causes of Y there might be (denoted X   2 , a vector of controls), there are only eight relevant case types, as illustrated in Table 28.2 . Identifying these case types is a relatively simple matter, and can be accomplished in a small‐ N sample by the construction of a truth‐table (modeled after Table 28.2 ) or in a large‐ N sample by the use of cross‐tabs.

Notes : X   1 = the variable of theoretical interest. X   2 = a vector of controls (a score of 0 indicates that all control variables have a score of 0, while a score of 1 indicates that all control variables have a score of 1). Y = the outcome of interest. A–H = case types (the N for each case type is indeterminate). G, H = possible pathway cases. Sample size = indeterminate.

Assumptions : (a) all variables can be coded dichotomously (a binary coding of the concept is valid); (b) all independent variables are positively correlated with Y in the general case; ( c ) X   1 is (at least sometimes) a sufficient cause of Y .

Note that the total number of combinations of values depends on the number of control variables, which we have represented with a single vector, X   2 . If this vector consists of a single variable then there are only eight case types. If this vector consists of two variables ( X   2a , X   2b ) then the total number of possible combinations increases from eight (2 3 ) to sixteen (2 4 ). And so forth. However, none of these combinations is relevant for present purposes except those where X   2a and X   2b have the same value (0 or 1). “Mixed” cases are not causal pathway cases, for reasons that should become clear.

The pathway case, following the logic of the crucial case, is one where the causal factor of interest, X   1 , correctly predicts Y while all other possible causes of Y (represented by the vector, X   2 ) make “wrong” predictions. If X   1 is—at least in some circumstances—a sufficient cause of Y , then it is these sorts of cases that should be most useful for tracing causal mechanisms. There are only two such cases in Ta b l e 28.2—G and H. In all other cases, the mechanism running from X   1 to Y would be difficult to discern either because X   1 and Y are not correlated in the usual way (constituting an unusual case, in the terms of our hypothesis) or because other confounding factors ( X   2 ) intrude. In case A, for example, the positive value on Y could be a product of X   1 or X   2 . An in‐depth examination of this case is not likely to be very revealing.

Keep in mind that because the researcher already knows from her cross‐case examination what the general causal relationships are, she knows (prior to the case‐ study investigation) what constitutes a correct or incorrect prediction. In the crucial‐ case method, by contrast, these expectations are deductive rather than empirical. This is what differentiates the two methods. And this is why the causal pathway case is useful principally for elucidating causal mechanisms rather than verifying or falsifying general propositions (which are already more or less apparent from the cross‐case evidence). Of course, we must leave open the possibility that the investigation of causal mechanisms would invalidate a general claim, if that claim is utterly contingent upon a specific set of causal mechanisms and the case study shows that no such mechanisms are present. However, this is rather unlikely in most social science settings. Usually, the result of such a finding will be a reformulation of the causal processes by which X   1 causes Y —or, alternatively, a realization that the case under investigation is aberrant (atypical of the general population of cases).

Sometimes, the research question is framed as a unidirectional cause: one is interested in why 0 becomes 1 (or vice versa) but not in why 1 becomes 0. In our previous example, we asked why democracies fail, not why countries become democratic or authoritarian. So framed, there can be only one type of causal‐pathway case. (Whether regime failure is coded as 0 or 1 is a matter of taste.) Where researchers are interested in bidirectional causality—a movement from 0 to 1 as well as from 1 to 0—there are two possible causal‐pathway cases, G and H. In practice, however, one of these case types is almost always more useful than the other. Thus, it seems reasonable to employ the term “pathway case” in the singular. In order to determine which of these two case types will be more useful for intensive analysis the researcher should look to see whether each case type exhibits desirable features such as: (a) a rare (unusual) value on X   1 or Y (designated “extreme” in our previous discussion), (b) observable temporal variation in X   1 , ( c ) an X   1 / Y relationship that is easier to study (it has more visible features; it is more transparent), or (d) a lower residual (thus indicating a more typical case, within the terms of the general model). Usually, the choice between G and H is intuitively obvious.

Now, let us consider a scenario in which all (or most) variables of concern to the model are continuous, rather than dichotomous. Here, the job of case selection is considerably more complex, for causal “sufficiency” (in the usual sense) cannot be invoked. It is no longer plausible to assume that a given cause can be entirely partitioned, i.e. rival factors eliminated. However, the search for a pathway case may still be viable. What we are looking for in this scenario is a case that satisfies two criteria: (1) it is not an outlier (or at least not an extreme outlier) in the general model and (2) its score on the outcome ( Y ) is strongly influenced by the theoretical variable of interest ( X   1 ), taking all other factors into account ( X   2 ). In this sort of case it should be easiest to “see” the causal mechanisms that lie between X   1 and Y .

Achieving the second desiderata requires a bit of manipulation. In order to determine which (nonoutlier) cases are most strongly affected by X   1 , given all the other parameters in the model, one must compare the size of the residuals for each case in a reduced form model, Y = Constant + X   2 + Res reduced , with the size of the residuals for each case in a full model, Y = Constant + X   2 + X   1 + Res full . The pathway case is that case, or set of cases, which shows the greatest difference between the residual for the reduced‐form model and the full model (ΔResidual). Thus,

Note that the residual for a case must be smaller in the full model than in the reduced‐ form model; otherwise, the addition of the variable of interest ( X   1 ) pulls the case away from the regression line. We want to find a case where the addition of X   1 pushes the case towards the regression line, i.e. it helps to “explain” that case.

As an example, let us suppose that we are interested in exploring the effect of mineral wealth on the prospects for democracy in a society. According to a good deal of work on this subject, countries with a bounty of natural resources—particularly oil—are less likely to democratize (or once having undergone a democratic transition, are more likely to revert to authoritarian rule) ( Barro 1999 ; Humphreys 2005 ; Ross 2001 ). The cross‐country evidence is robust. Yet as is often the case, the causal mechanisms remain rather obscure. In order to better understand this phenomenon it may be worthwhile to exploit the findings of cross‐country regression models in order to identify a country whose regime type (i.e. its democracy “score” on some general index) is strongly affected by its natural‐research wealth, all other things held constant. An analysis of this sort identifies two countries— the United Arab Emirates and Kuwait—with high Δ Residual values and modest residuals in the full model (signifying that these cases are not outliers). Researchers seeking to explore the effect of oil wealth on regime type might do well to focus on these two cases since their patterns of democracy cannot be well explained by other factors—e.g. economic development, religion, European influence, or ethnic fractionalization. The presence of oil wealth in these countries would appear to have a strong independent effect on the prospects for democratization in these cases, an effect that is well modeled by general theory and by the available cross‐case evidence.

To reiterate, the logic of causal “elimination” is much more compelling where variables are dichotomous and where causal sufficiency can be assumed ( X   1 is sufficient by itself, at least in some circumstances, to cause Y ). Where variables are continuous, the strategy of the pathway case is more dubious, for potentially confounding causal factors ( X   2 ) cannot be neatly partitioned. Even so, we have indicated why the selection of a pathway case may be a logical approach to case‐study analysis in many circumstances.

The exceptions may be briefly noted. Sometimes, where all variables in a model are dichotomous, there are no pathway cases, i.e. no cases of type G or H (in Table 28.2 ). This is known as the “empty cell” problem, or a problem of severe causal multicollinearity. The universe of observational data does not always oblige us with cases that allow us to independently test a given hypothesis. Where variables are continuous, the analogous problem is that of a causal variable of interest ( X   1 ) that has only minimal effects on the outcome of interest. That is, its role in the general model is quite minor. In these situations, the only cases that are strongly affected by X   1 —if there are any at all—may be extreme outliers, and these sorts of cases are not properly regarded as providing confirmatory evidence for a proposition, for reasons that are abundantly clear by now.

Finally, it should be clarified that the identification of a causal pathway case does not obviate the utility of exploring other cases. One might, for example, want to compare both sorts of potential pathway cases—G and H—with each other. Many other combinations suggest themselves. However, this sort of multi‐case investigation moves beyond the logic of the causal‐pathway case.

8 Most‐similar Cases

The most‐similar method employs a minimum of two cases. 16 In its purest form, the chosen pair of cases is similar in all respects except the variable(s) of interest. If the study is exploratory (i.e. hypothesis generating), the researcher looks for cases that differ on the outcome of theoretical interest but are similar on various factors that might have contributed to that outcome, as illustrated in Table 28.3 (A) . This is a common form of case selection at the initial stage of research. Often, fruitful analysis begins with an apparent anomaly: two cases are apparently quite similar, and yet demonstrate surprisingly different outcomes. The hope is that intensive study of these cases will reveal one—or at most several—factors that differ across these cases. These differing factors ( X   1 ) are looked upon as putative causes. At this stage, the research may be described by the second diagram in Table 28.3 (B) . Sometimes, a researcher begins with a strong hypothesis, in which case her research design is confirmatory (hypothesis testing) from the get‐go. That is, she strives to identify cases that exhibit different outcomes, different scores on the factor of interest, and similar scores on all other possible causal factors, as illustrated in the second (hypothesis‐testing) diagram in Table 28.3 (B) .

The point is that the purpose of a most‐similar research design, and hence its basic setup, often changes as a researcher moves from an exploratory to a confirmatory mode of analysis. However, regardless of where one begins, the results, when published, look like a hypothesis‐testing research design. Question marks have been removed: (A) becomes (B) in Table 28.3 .

As an example, let us consider Leon Epstein's classic study of party cohesion, which focuses on two “most‐similar” countries, the United States and Canada. Canada has highly disciplined parties whose members vote together on the floor of the House of Commons while the United States has weak, undisciplined parties, whose members often defect on floor votes in Congress. In explaining these divergent outcomes, persistent over many years, Epstein first discusses possible causal factors that are held more or less constant across the two cases. Both the United States and Canada inherited English political cultures, both have large territories and heterogeneous populations, both are federal, and both have fairly loose party structures with strong regional bases and a weak center. These are the “control” variables. Where they differ is in one constitutional feature: Canada is parliamentary while the United States is presidential. And it is this institutional difference that Epstein identifies as the crucial (differentiating) cause. (For further examples of the most‐similar method see Brenner 1976 ; Hamilton 1977 ; Lipset 1968 ; Miguel 2004 ; Moulder 1977 ; Posner 2004 .)

X   1 = the variable of theoretical interest. X   2 = a vector of controls. Y = the outcome of interest.

Several caveats apply to any most‐similar analysis (in addition to the usual set of assumptions applying to all case‐study analysis). First, each causal factor is understood as having an independent and additive effect on the outcome; there are no “interaction” effects. Second, one must code cases dichotomously (high/low, present/absent). This is straightforward if the underlying variables are also dichotomous (e.g. federal/unitary). However, it is often the case that variables of concern in the model are continuous (e.g. party cohesion). In this setting, the researcher must “dichotomize” the scoring of cases so as to simplify the two‐case analysis. (Some flexibility is admissible on the vector of controls ( X   2 ) that are “held constant” across the cases. Nonidentity is tolerable if the deviation runs counter to the predicted hypothesis. For example, Epstein describes both the United States and Canada as having strong regional bases of power, a factor that is probably more significant in recent Canadian history than in recent American history. However, because regional bases of power should lead to weaker parties, rather than stronger parties, this element of nonidentity does not challenge Epstein's conclusions. Indeed, it sets up a most‐difficult research scenario, as discussed above.)

In one respect the requirements for case control are not so stringent. Specifically, it is not usually necessary to measure control variables (at least not with a high degree of precision) in order to control for them. If two countries can be assumed to have similar cultural heritages one needn't worry about constructing variables to measure that heritage. One can simply assert that, whatever they are, they are more or less constant across the two cases. This is similar to the technique employed in a randomized experiment, where the researcher typically does not attempt to measure all the factors that might affect the causal relationship of interest. She assumes, rather, that these unknown factors have been neutralized across the treatment and control groups by randomization or by the choice of a sample that is internally homogeneous.

The most useful statistical tool for identifying cases for in‐depth analysis in a most‐ similar setting is probably some variety of matching strategy—e.g. exact matching, approximate matching, or propensity‐score matching. 17 The product of this procedure is a set of matched cases that can be compared in whatever way the researcher deems appropriate. These are the “most‐similar” cases. Rosenbaum and Silber (2001 , 223) summarize:

Unlike model‐based adjustments, where [individuals] vanish and are replaced by the coefficients of a model, in matching, ostensibly comparable patterns are compared directly, one by one. Modern matching methods involve statistical modeling and combinatorial algorithms, but the end result is a collection of pairs or sets of people who look comparable, at least on average. In matching, people retain their integrity as people, so they can be examined and their stories can be told individually.

Matching, conclude the authors, “facilitates, rather than inhibits, thick description” ( Rosenbaum and Silber 2001 , 223).

In principle, the same matching techniques that have been used successfully in observational studies of medical treatments might also be adapted to the study of nation states, political parties, cities, or indeed any traditional paired cases in the social sciences. Indeed, the current popularity of matching among statisticians—relative, that is, to garden‐variety regression models—rests upon what qualitative researchers would recognize as a “case‐based” approach to causal analysis. If Rosenbaum and Silber are correct, it may be perfectly reasonable to appropriate this large‐ N method of analysis for case‐study purposes.

As with other methods of case selection, the most‐similar method is prone to problems of nonrepresentativeness. If employed in a qualitative fashion (without a systematic cross‐case selection strategy), potential biases in the chosen case must be addressed in a speculative way. If the researcher employs a matching technique of case selection within a large‐ N sample, the problem of potential bias can be addressed by assuring the choice of cases that are not extreme outliers, as judged by their residuals in the full model. Most‐similar cases should also be “typical” cases, though some scope for deviance around the regression line may be acceptable for purposes of finding a good fit among cases.

X   1 = the variable of theoretical interest. X   2a–d = a vector of controls. Y = the outcome of interest.

9 Most‐different Cases

A final case‐selection method is the reverse image of the previous method. Here, variation on independent variables is prized, while variation on the outcome is eschewed. Rather than looking for cases that are most‐similar, one looks for cases that are most‐ different . Specifically, the researcher tries to identify cases where just one independent variable ( X   1 ), as well as the dependent variable ( Y ), covary, while all other plausible factors ( X   2a–d ) show different values. 18

The simplest form of this two‐case comparison is illustrated in Table 28.4 . Cases A and B are deemed “most different,” though they are similar in two essential respects— the causal variable of interest and the outcome.

As an example, I follow Marc Howard's (2003) recent work, which explores the enduring impact of Communism on civil society. 19 Cross‐national surveys show a strong correlation between former Communist regimes and low social capital, controlling for a variety of possible confounders. It is a strong result. Howard wonders why this relationship is so strong and why it persists, and perhaps even strengthens, in countries that are no longer socialist or authoritarian. In order to answer this question, he focuses on two most‐different cases, Russia and East Germany. These two countries were quite different—in all ways other than their Communist experience— prior to the Soviet era, during the Soviet era (since East Germany received substantial subsidies from West Germany), and in the post‐Soviet era, as East Germany was absorbed into West Germany. Yet, they both score near the bottom of various cross‐ national indices intended to measure the prevalence of civic engagement in the current era. Thus, Howard's (2003 , 6–9) case selection procedure meets the requirements of the most‐different research design: Variance is found on all (or most) dimensions aside from the key factor of interest (Communism) and the outcome (civic engagement).

What leverage is brought to the analysis from this approach? Howard's case studies combine evidence drawn from mass surveys and from in‐depth interviews of small, stratified samples of Russians and East Germans. (This is a good illustration, incidentally, of how quantitative and qualitative evidence can be fruitfully combined in the intensive study of several cases.) The product of this analysis is the identification of three causal pathways that, Howard (2003 , 122) claims, help to explain the laggard status of civil society in post‐Communist polities: “the mistrust of communist organizations, the persistence of friendship networks, and the disappointment with post‐communism.” Simply put, Howard (2003 , 145) concludes, “a great number of citizens in Russia and Eastern Germany feel a strong and lingering sense of distrust of any kind of public organization, a general satisfaction with their own personal networks (accompanied by a sense of deteriorating relations within society overall), and disappointment in the developments of post‐communism.”

The strength of this most‐different case analysis is that the results obtained in East Germany and Russia should also apply in other post‐Communist polities (e.g. Lithuania, Poland, Bulgaria, Albania). By choosing a heterogeneous sample, Howard solves the problem of representativeness in his restricted sample. However, this sample is demonstrably not representative across the population of the inference, which is intended to cover all countries of the world.

More problematic is the lack of variation on key causal factors of interest— Communism and its putative causal pathways. For this reason, it is difficult to reach conclusions about the causal status of these factors on the basis of the most‐different analysis alone. It is possible, that is, that the three causal pathways identified by Howard also operate within polities that never experienced Communist rule.

Nor does it seem possible to conclusively eliminate rival hypotheses on the basis of this most‐different analysis. Indeed, this is not Howard's intention. He wishes merely to show that whatever influence on civil society might be attributed to economic, cultural, and other factors does not exhaust this subject.

My considered judgment is that the most‐different research design provides minimal leverage into the problem of why Communist systems appear to suppress civic engagement, years after their disappearance. Fortunately, this is not the only research design employed by Howard in his admirable study. Indeed, the author employs two other small‐ N cross‐case methods, as well as a large‐ N cross‐country statistical analysis. These methods do most of the analytic work. East Germany may be regarded as a causal pathway case (see above). It has all the attributes normally assumed to foster civic engagement (e.g. a growing economy, multiparty competition, civil liberties, a free press, close association with Western European culture and politics), but nonetheless shows little or no improvement on this dimension during the post‐ transition era ( Howard 2003 , 8). It is plausible to attribute this lack of change to its Communist past, as Howard does, in which case East Germany should be a fruitful case for the investigation of causal mechanisms. The contrast between East and West Germany provides a most‐similar analysis since the two polities share virtually everything except a Communist past. This variation is also deftly exploited by Howard.

I do not wish to dismiss the most‐different research method entirely. Surely, Howard's findings are stronger with the intensive analysis of Russia than they would be without. Yet his book would not stand securely on the empirical foundation provided by most‐different analysis alone. If one strips away the pathway‐case (East Germany) and the most‐similar analysis (East/West Germany) there is little left upon which to base an analysis of causal relations (aside from the large‐ N cross‐national analysis). Indeed, most scholars who employ the most‐different method do so in conjunction with other methods. 20 It is rarely, if ever, a standalone method. 21

Generalizing from this discussion of Marc Howard's work, I offer the following summary remarks on the most‐different method of case analysis. (I leave aside issues faced by all case‐study analyses, issues that are explored in Gerring 2007 .)

Let us begin with a methodological obstacle that is faced by both Millean styles of analysis—the necessity of dichotomizing every variable in the analysis. Recall that, as with most‐similar analysis, differences across cases must generally be sizeable enough to be interpretable in an essentially dichotomous fashion (e.g. high/low, present/absent) and similarities must be close enough to be understood as essentially identical (e.g. high/high, present/present). Otherwise the results of a Millean style analysis are not interpretable. The problem of “degrees” is deadly if the variables under consideration are, by nature, continuous (e.g. GDP). This is a particular concern in Howard's analysis, where East Germany scores somewhat higher than Russia in civic engagement; they are both low, but Russia is quite a bit lower. Howard assumes that this divergence is minimal enough to be understood as a difference of degrees rather than of kinds, a judgment that might be questioned. In these respects, most‐different analysis is no more secure—but also no less—than most‐similar analysis.

In one respect, most‐different analysis is superior to most‐similar analysis. If the coding assumptions are sound, the most‐different research design may be quite useful for eliminating necessary causes . Causal factors that do not appear across the chosen cases—e.g. X   2a–d in Table 28.4 —are evidently unnecessary for the production of Y . However, it does not follow that the most‐different method is the best method for eliminating necessary causes. Note that the defining feature of this method is the shared element across cases— X   1 in Table 28.4 . This feature does not help one to eliminate necessary causes. Indeed, if one were focused solely on eliminating necessary causes one would presumably seek out cases that register the same outcomes and have maximum diversity on other attributes. In Table 28.4 , this would be a set of cases that satisfy conditions X   2a–d , but not X   1 . Thus, even the presumed strength of the most‐different analysis is not so strong.

Usually, case‐study analysis is focused on the identification (or clarification) of causal relations, not the elimination of possible causes. In this setting, the most‐ different technique is useful, but only if assumptions of causal uniqueness hold. By “causal uniqueness,” I mean a situation in which a given outcome is the product of only one cause: Y cannot occur except in the presence of X . X is necessary, and in some situations (given certain background conditions) sufficient, to cause Y . 22

Consider the following hypothetical example. Suppose that a new disease, about which little is known, has appeared in Country A. There are hundreds of infected persons across dozens of affected communities in that country. In Country B, located at the other end of the world, several new cases of the disease surface in a single community. In this setting, we can imagine two sorts of Millean analyses. The first examines two similar communities within Country A, one of which has developed the disease and the other of which has not. This is the most‐similar style of case comparison, and focuses accordingly on the identification of a difference between the two cases that might account for variation across the sample. A second approach focuses on communities where the disease has appeared across the two countries and searches for any similarities that might account for these similar outcomes. This is the most‐different research design.

Both are plausible approaches to this particular problem, and we can imagine epidemiologists employing them simultaneously. However, the most‐different design demands stronger assumptions about the underlying factors at work. It supposes that the disease arises from the same cause in any setting. This is often a reasonable operating assumption when one is dealing with natural phenomena, though there are certainly many exceptions. Death, for example, has many causes. For this reason, it would not occur to us to look for most‐different cases of high mortality around the world. In order for the most‐different research design to effectively identify a causal factor at work in a given outcome, the researcher must assume that X   1 —the factor held constant across the diverse cases—is the only possible cause of Y (see Table 28.4 ). This assumption rarely holds in social‐scientific settings. Most outcomes of interest to anthropologists, economists, political scientists, and sociologists have multiple causes. There are many ways to win an election, to build a welfare state, to get into a war, to overthrow a government, or—returning to Marc Howard's work—to build a strong civil society. And it is for this reason that most‐different analysis is rarely applied in social science work and, where applied, is rarely convincing.

If this seems a tad severe, there is a more charitable way of approaching the most‐different method. Arguably, this is not a pure “method” at all but merely a supplement, a way of incorporating diversity in the sub‐sample of cases that provide the unusual outcome of interest. If the unusual outcome is revolutions, one might wish to encompass a wide variety of revolutions in one's analysis. If the unusual outcome is post‐Communist civil society, it seems appropriate to include a diverse set of post‐Communist polities in one's sample of case studies, as Marc Howard does. From this perspective, the most‐different method (so‐called) might be better labeled a diverse‐case method, as explored above.

10 Conclusions

In order to be a case of something broader than itself, the chosen case must be representative (in some respects) of a larger population. Otherwise—if it is purely idiosyncratic (“unique”)—it is uninformative about anything lying outside the borders of the case itself. A study based on a nonrepresentative sample has no (or very little) external validity. To be sure, no phenomenon is purely idiosyncratic; the notion of a unique case is a matter that would be difficult to define. One is concerned, as always, with matters of degree. Cases are more or less representative of some broader phenomenon and, on that score, may be considered better or worse subjects for intensive analysis. (The one exception, as noted, is the influential case.)

Of all the problems besetting case‐study analysis, perhaps the most persistent— and the most persistently bemoaned—is the problem of sample bias ( Achen and Snidal 1989 ; Collier and Mahoney 1996 ; Geddes 1990 ; King, Keohane, and Verba 1994 ; Rohlfing 2004 ; Sekhon 2004 ). Lisa Martin (1992 , 5) finds that the overemphasis of international relations scholars on a few well‐known cases of economic sanctions— most of which failed to elicit any change in the sanctioned country—“has distorted analysts view of the dynamics and characteristics of economic sanctions.” Barbara Geddes (1990) charges that many analyses of industrial policy have focused exclusively on the most successful cases—primarily the East Asian NICs—leading to biased inferences. Anna Breman and Carolyn Shelton (2001) show that case‐study work on the question of structural adjustment is systematically biased insofar as researchers tend to focus on disaster cases—those where structural adjustment is associated with very poor health and human development outcomes. These cases, often located in sub‐Saharan Africa, are by no means representative of the entire population. Consequently, scholarship on the question of structural adjustment is highly skewed in a particular ideological direction (against neoliberalism) (see also Gerring, Thacker, and Moreno 2005) .

These examples might be multiplied many times. Indeed, for many topics the most‐studied cases are acknowledged to be less than representative. It is worth reflecting upon the fact that our knowledge of the world is heavily colored by a few “big” (populous, rich, powerful) countries, and that a good portion of the disciplines of economics, political science, and sociology are built upon scholars' familiarity with the economics, political science, and sociology of one country, the United States. 23 Case‐study work is particularly prone to problems of investigator bias since so much rides on the researcher's selection of one (or a few) cases. Even if the investigator is unbiased, her sample may still be biased simply by virtue of “random” error (which may be understood as measurement error, error in the data‐generation process, or as an underlying causal feature of the universe).

There are only two situations in which a case‐study researcher need not be concerned with the representativeness of her chosen case. The first is the influential case research design, where a case is chosen because of its possible influence on a cross‐case model, and hence is not expected to be representative of a larger sample. The second is the deviant‐case method, where the chosen case is employed to confirm a broader cross‐case argument to which the case stands as an apparent exception. Yet even here the chosen case is expected to be representative of a broader set of cases—those, in particular, that are poorly explained by the extant model.

In all other circumstances, cases must be representative of the population of interest in whatever ways might be relevant to the proposition in question. Note that where a researcher is attempting to disconfirm a deterministic proposition the question of representativeness is perhaps more appropriately understood as a question of classification: Is the chosen case appropriately classified as a member of the designated population? If so, then it is fodder for a disconfirming case study.

If the researcher is attempting to confirm a deterministic proposition, or to make probabilistic arguments about a causal relationship, then the problem of representativeness is of the more usual sort: Is case A unit‐homogeneous relative to other cases in the population? This is not an easy matter to test. However, in a large‐ N context the residual for that case (in whatever model the researcher has greatest confidence in) is a reasonable place to start. Of course, this test is only as good as the model at hand. Any incorrect specifications or incorrect modeling procedures will likely bias the results and give an incorrect assessment of each case's “typicality.” In addition, there is the possibility of stochastic error, errors that cannot be modeled in a general framework. Given the explanatory weight that individual cases are asked to bear in a case‐study analysis, it is wise to consider more than just the residual test of representativeness. Deductive logic and an in‐depth knowledge of the case in question are often more reliable tools than the results of a cross‐case model.

In any case, there is no dispensing with the question. Case studies (with the two exceptions already noted) rest upon an assumed synecdoche: The case should stand for a population. If this is not true, or if there is reason to doubt this assumption, then the utility of the case study is brought severely into question.

Fortunately, there is some safety in numbers. Insofar as case‐study evidence is combined with cross‐case evidence the issue of sample bias is mitigated. Indeed, the suspicion of case‐study work that one finds in the social sciences today is, in my view, a product of a too‐literal interpretation of the case‐study method. A case study tout court is thought to mean a case study tout seul . Insofar as case studies and cross‐case studies can be enlisted within the same investigation (either in the same study or by reference to other studies in the same subfield), problems of representativeness are less worrisome. This is the virtue of cross‐level work, a.k.a. “triangulation.”

11 Ambiguities

Before concluding, I wish to draw attention to two ambiguities in case‐selection strategies in case‐study research. The first concerns the admixture of several case‐ selection strategies. The second concerns the changing status of a case as a study proceeds.

Some case studies follow only one strategy of case selection. They are typical , diverse , extreme , deviant , influential , crucial , pathway , most‐similar , or most‐different research designs, as discussed. However, many case studies mix and match among these case‐selection strategies. Indeed, insofar as all case studies seek representative samples, they are always in search of “typical” cases. Thus, it is common for writers to declare that their case is, for example, both extreme and typical; it has an extreme value on X   1 or Y but is not, in other respects, idiosyncratic. There is not much that one can say about these combinations of strategies except that, where the cases allow for a variety of empirical strategies, there is no reason not to pursue them. And where the same cases can serve several functions at once (without further effort on the researcher's part), there is little cost to a multi‐pronged approach to case analysis.

The second issue that deserves emphasis is the changing status of a case during the course of a researcher's investigation—which may last for years, if not decades. The problem is acute wherever a researcher begins in an exploratory mode and proceeds to hypothesis‐testing (that is, she develops a specific X   1 / Y proposition) or where the operative hypothesis or key control variable changes (a new causal factor is discovered or another outcome becomes the focus of analysis). Things change. And it is the mark of a good researcher to keep her mind open to new evidence and new insights. Too often, methodological discussions give the misleading impression that hypotheses are clear and remain fixed over the course of a study's development. Nothing could be further from the truth. The unofficial transcripts of academia— accessible in informal settings, where researchers let their guards down (particularly if inebriated)—are filled with stories about dead‐ends, unexpected findings, and drastically revised theory chapters. It would be interesting, in this vein, to compare published work with dissertation prospectuses and fellowship applications. I doubt if the correlation between these two stages of research is particularly strong.

Research, after all, is about discovery, not simply the verification or falsification of static hypotheses. That said, it is also true that research on a particular topic should move from hypothesis generating to hypothesis‐testing. This marks the progress of a field, and of a scholar's own work. As a rule, research that begins with an open‐ended ( X ‐ or Y ‐centered) analysis should conclude with a determinate X   1 / Y hypothesis.

The problem is that research strategies that are ideal for exploration are not always ideal for confirmation. The extreme‐case method is inherently exploratory since there is no clear causal hypothesis; the researcher is concerned merely to explore variation on a single dimension ( X or Y ). Other methods can be employed in either an open‐ ended (exploratory) or a hypothesis‐testing (confirmatory/disconfirmatory) mode. The difficulty is that once the researcher has arrived at a determinate hypothesis the originally chosen research design may no longer appear to be so well designed.

This is unfortunate, but inevitable. One cannot construct the perfect research design until (a) one has a specific hypothesis and (b) one is reasonably certain about what one is going to find “out there” in the empirical world. This is particularly true of observational research designs, but it also applies to many experimental research designs: Usually, there is a “good” (informative) finding, and a finding that is less insightful. In short, the perfect case‐study research design is usually apparent only ex post facto .

There are three ways to handle this. One can explain, straightforwardly, that the initial research was undertaken in an exploratory fashion, and therefore not constructed to test the specific hypothesis that is—now—the primary argument. Alternatively, one can try to redesign the study after the new (or revised) hypothesis has been formulated. This may require additional field research or perhaps the integration of additional cases or variables that can be obtained through secondary sources or through consultation of experts. A final approach is to simply jettison, or de‐emphasize, the portion of research that no longer addresses the (revised) key hypothesis. A three‐case study may become a two‐case study, and so forth. Lost time and effort are the costs of this downsizing.

In the event, practical considerations will probably determine which of these three strategies, or combinations of strategies, is to be followed. (They are not mutually exclusive.) The point to remember is that revision of one's cross‐case research design is normal and perhaps to be expected. Not all twists and turns on the meandering trail of truth can be anticipated.

12 Are There Other Methods of Case Selection?

At the outset of this chapter I summarized the task of case selection as a matter of achieving two objectives: representativeness (typicality) and variation (causal leverage). Evidently, there are other objectives as well. For example, one wishes to identify cases that are independent of each other. If chosen cases are affected by each other (sometimes known as Galton's problem or a problem of diffusion), this problem must be corrected before analysis can take place. I have neglected this issue because it is usually apparent to the researcher and, in any case, there are no simple techniques that might be utilized to correct for such biases. (For further discussion of this and other factors impinging upon case selection see Gerring 2001 , 178–81.)

I have also disregarded pragmatic/logistical issues that might affect case selection. Evidently, case selection is often influenced by a researcher's familiarity with the language of a country, a personal entrée into that locale, special access to important data, or funding that covers one archive rather than another. Pragmatic considerations are often—and quite rightly—decisive in the case‐selection process.

A final consideration concerns the theoretical prominence of a particular case within the literature on a subject. Researchers are sometimes obliged to study cases that have received extensive attention in previous studies. These are sometimes referred to as “paradigmatic” cases or “exemplars” ( Flyvbjerg 2004 , 427).

However, neither pragmatic/logistical utility nor theoretical prominence qualifies as a methodological factor in case selection. That is, these features of a case have no bearing on the validity of the findings stemming from a study. As such, it is appropriate to grant these issues a peripheral status in this chapter.

One final caveat must be issued. While it is traditional to distinguish among the tasks of case selection and case analysis, a close look at these processes shows them to be indistinct and overlapping. One cannot choose a case without considering the sort of analysis that it might be subjected to, and vice versa. Thus, the reader should consider choosing cases by employing the nine techniques laid out in this chapter along with any considerations that might be introduced by virtue of a case's quasi‐experimental qualities, a topic taken up elsewhere ( Gerring 2007 , ch. 6 ).

Abadie, A. , Drukker, D. , Herr, J. L. , and Imbens, G. W.   2001 . Implementing matching estimators for average treatment effects in Stata.   Stata Journal , 1: 1–18.

Google Scholar

Abbott, A.   2001 . Time Matters: On Theory and Method . Chicago: University of Chicago Press.

Google Preview

——  and Tsay, A.   2000 . Sequence analysis and optimal matching methods in sociology.   Sociological Methods and Research , 29: 3–33. 10.1177/0049124100029001001

——  and Forrest, J.   1986 . Optimal matching methods for historical sequences.   Journal of Interdisciplinary History , 16: 471–94. 10.2307/204500

Achen, C. H. , and Snidal, D.   1989 . Rational deterrence theory and comparative case studies.   World Politics , 41: 143–69. 10.2307/2010405

Allen, W. S.   1965 . The Nazi Seizure of Power: The Experience of a Single German Town, 1930–1935 . New York: Watts.

Almond, G. A.   1956 . Comparative political systems.   Journal of Politics , 18: 391–409.

Amenta, E.   1991 . Making the most of a case study: theories of the welfare state and the American experience. Pp. 172–94 in Issues and Alternatives in Comparative Social Research ed. C. C. Ragin . Leiden: E. J. Brill.

Barro, R. J.   1999 . Determinants of democracy.   Journal of Political Economy , 107: 158–83. 10.1086/250107

Belsey, D. A. , Kuh, E. , and Welsch, R. E.   2004 . Regression Diagnostics: Identifying Influential Data and Sources of Collinearity . New York: Wiley.

Bennett, A. , Lepgold, J. , and Unger, D.   1994 . Burden‐sharing in the Persian Gulf War.   International Organization , 48: 39–75. 10.1017/S0020818300000813

Bentley, A. 1908/ 1967 . The Process of Government . Cambridge, Mass.: Harvard University Press.

Brady, H. E. , and Collier, D. (eds.) 2004 . Rethinking Social Inquiry: Diverse Tools, Shared Standards . Lanham, Md.: Rowman and Littlefield.

Braumoeller, B. F.   2003 . Causal complexity and the study of politics.   Political Analysis , 11: 209–33. 10.1093/pan/mpg012

Breman, A. , and Shelton, C. 2001. Structural adjustment and health: a literature review of the debate, its role‐players and presented empirical evidence. CMH Working Paper Series, Paper No. WG6: 6. WHO, Commission on Macroeconomics and Health.

Brenner, R.   1976 . Agrarian class structure and economic development in pre‐industrial Europe.   Past and Present , 70: 30–75. 10.1093/past/70.1.30

Browne, A.   1987 . When Battered Women Kill . New York: Free Press.

Buchbinder, S. , and Vittinghoff, E.   1999 . HIV‐infected long‐term nonprogressors: epidemiology, mechanisms of delayed progression, and clinical and research implications.   Microbes Infect , 1: 1113–20. 10.1016/S1286-4579(99)00204-X

Cohen, M. R. , and Nagel, E.   1934 . An Introduction to Logic and Scientific Method . New York: Harcourt, Brace and Company.

Collier, D. , and Mahoney, J.   1996 . Insights and pitfalls: selection bias in qualitative research.   World Politics , 49: 56–91. 10.1353/wp.1996.0023

Collier, R. B. , and Collier, D. 1991/ 2002 . Shaping the Political Arena: Critical Junctures, the Labor Movement, and Regime Dynamics in Latin America . Notre Dame, Ind.: University of Notre Dame Press.

Colomer, J. M.   1991 . Transitions by agreement: modeling the Spanish way.   American Political Science Review , 85: 1283–302. 10.2307/1963946

Converse, P. E. , and Dupeux, G.   1962 . Politicization of the electorate in France and the United States.   Public Opinion Quarterly , 16: 1–23. 10.1086/267067

Coppedge, M. J. 2004. The conditional impact of the economy on democracy in Latin America. Presented at the conference “Democratic Advancements and Setbacks: What Have We Learnt?”, Uppsala University, June 11–13.

De Felice, E. G.   1986 . Causal inference and comparative methods.   Comparative Political Studies , 19: 415–37. 10.1177/0010414086019003005

Desch, M. C.   2002 . Democracy and victory: why regime type hardly matters.   International Security , 27: 5–47. 10.1162/016228802760987815

Deyo, F. (ed.) 1987 . The Political Economy of the New Asian Industrialism . Ithaca, NY: Cornell University Press.

Dion, D.   1998 . Evidence and inference in the comparative case study.   Comparative Politics , 30: 127–45. 10.2307/422284

Eckstein, H.   1975 . Case studies and theory in political science. In Handbook of Political Science , vii: Political Science: Scope and Theory , ed. F. I. Greenstein and N. W. Polsby . Reading, Mass.: Addison‐Wesley.

Eggan, F.   1954 . Social anthropology and the method of controlled comparison.   American Anthropologist , 56: 743–63. 10.1525/aa.1954.56.5.02a00020

Elman, C.   2003 . Lessons from Lakatos. In Progress in International Relations Theory: Appraising the Field , ed. C. Elman and M. F. Elman . Cambridge, Mass.: MIT Press.

——  2005 . Explanatory typologies in qualitative studies of international politics.   International Organization , 59: 293–326.

Emigh, R.   1997 . The power of negative thinking: the use of negative case methodology in the development of sociological theory.   Theory and Society , 26: 649–84. 10.1023/A:1006896217647

Epstein, L. D.   1964 . A comparative study of Canadian parties.   American Political Science Review , 58: 46–59. 10.2307/1952754

Ertman, T.   1997 . Birth of the Leviathan: Building States and Regimes in Medieval and Early Modern Europe . Cambridge: Cambridge University Press.

Esping‐Andersen, G.   1990 . The Three Worlds of Welfare Capitalism . Princeton, NJ: Princeton University Press.

Flyvbjerg, B.   2004 . Five misunderstandings about case‐study research. Pp. 420–34 in Qualitative Research Practice , ed. C. Seale , G. Gobo , J. F. Gubrium , and D. Silverman . London: Sage.

Geddes, B.   1990 . How the cases you choose affect the answers you get: selection bias in comparative politics. In Political Analysis , vol. ii, ed. J. A. Stimson . Ann Arbor: University of Michigan Press.

——  2003 . Paradigms and Sand Castles: Theory Building and Research Design in Comparative Politics . Ann Arbor: University of Michigan Press.

George, A. L. , and Bennett, A.   2005 . Case Studies and Theory Development . Cambridge, Mass.: MIT Press.

——  and Smoke, R.   1974 . Deterrence in American Foreign Policy: Theory and Practice . New York: Columbia University Press.

Gerring, J.   2001 . Social Science Methodology: A Criterial Framework . Cambridge: Cambridge University Press.

——  2007 . Case Study Research: Principles and Practices . Cambridge: Cambridge University Press.

——  Thacker, S. and Moreno, C. 2005. Do neoliberal policies save lives? Unpublished manuscript.

Goertz, G. and Starr, H. (eds.) 2003 . Necessary Conditions: Theory, Methodology and Applications . New York: Rowman and Littlefield.

——  and Levy, J. (eds.) forthcoming. Causal explanations, necessary conditions, and case studies: World War I and the end of the Cold War. Manuscript.

Goodin, R. E. and Smitsman, A.   2000 . Placing welfare states: the Netherlands as a crucial test case.   Journal of Comparative Policy Analysis , 2: 39–64. 10.1080/13876980008412635

Gujarati, D. N.   2003 . Basic Econometrics , 4th edn. New York: McGraw‐Hill.

Hamilton, G. G.   1977 . Chinese consumption of foreign commodities: a comparative perspective.   American Sociological Review , 42: 877–91. 10.2307/2094574

Haynes, B. F.   Pantaleo, G. and Fauci, A. S.   1996 . Toward an understanding of the correlates of protective immunity to HIV infection.   Science , 271: 324–8. 10.1126/science.271.5247.324

Hempel, C. G.   1942 . The function of general laws in history.   Journal of Philosophy , 39: 35–48. 10.2307/2017635

Ho, D. E.   Imai, K.   King, G. and Stuart, E. A. 2004. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Manuscript.

Howard, M. M.   2003 . The Weakness of Civil Society in Post‐Communist Europe . Cambridge: Cambridge University Press.

Howson, C. and Urbach, P.   1989 . Scientific Reasoning: The Bayesian Approach . La Salle, Ill.: Open Court.

Humphreys, M.   2005 . Natural resources, conflict, and conflict resolution: uncovering the mechanisms.   Journal of Conflict Resolution , 49: 508–37. 10.1177/0022002705277545

Jenicek, M.   2001 . Clinical Case Reporting in Evidence‐Based Medicine , 2nd edn. Oxford: Oxford University Press.

Karl, T. L.   1997 . The Paradox of Plenty: Oil Booms and Petro‐states . Berkeley: University of California Press.

Kazancigil, A.   1994 . The deviant case in comparative analysis: high stateness in comparative analysis. Pp. 213–38 in Comparing Nations: Concepts, Strategies, Substance , ed. M. Dogan and A. Kazancigil . Cambridge: Blackwell.

Kemp, K. A.   1986 . Race, ethnicity, class and urban spatial conflict: Chicago as a crucial case   Urban Studies , 23: 197–208. 10.1080/00420988620080231

Kendall, P. L. and Wolf, K. M. 1949/ 1955 . The analysis of deviant cases in communications research. In Communications Research, 1948–1949 , ed. P. F. Lazarsfeld and F. N. Stanton. New York: Harper and Brothers. Reprinted as pp. 167–70 in The Language of Social Research , ed. P. F. Lazarsfeld and M. Rosenberg . New York: Free Press.

Kennedy, C. H.   2005 . Single‐case Designs for Educational Research . Boston: Allyn and Bacon.

Kennedy, P.   2003 . A Guide to Econometrics , 5th edn. Cambridge, Mass.: MIT Press.

Khong, Y. F.   1992 . Analogies at War: Korea, Munich, Dien Bien Phu, and the Vietnam Decisions of 1965 . Princeton, NJ: Princeton University Press.

King, G.   Keohane, R. O. and Verba, S.   1994 . Designing Social Inquiry: Scientific Inference in Qualitative Research . Princeton, NJ: Princeton University Press.

Lakatos, I.   1978 . The Methodology of Scientific Research Programmes . Cambridge: Cambridge University Press.

Lazarsfeld, P. F. and Barton, A. H.   1951 . Qualitative measurement in the social sciences: classification, typologies, and indices. In The Policy Sciences , ed. D. Lerner and H. D. Lass‐ well. Stanford, Calif.: Stanford University Press.

Levy, J. S.   2002 . Qualitative methods in international relations. In Evaluating Methodology in International Studies , ed. F. P. Harvey and M. Brecher. Ann Arbor: University of Michigan Press.

Lijphart, A.   1968 . The Politics of Accommodation: Pluralism and Democracy in the Netherlands . Berkeley: University of California Press.

——  1969 . Consociational democracy.   World Politics , 21: 207–25. 10.2307/2009820

——  1971 . Comparative politics and the comparative method. American Political Science Review , 65: 682–93.

——  1975 . The comparable cases strategy in comparative research.   Comparative Political Studies , 8: 158–77.

Lipset, S. M.   1959 . Some social requisites of democracy: economic development and political development.   American Political Science Review , 53: 69–105. 10.2307/1951731

——  1960/ 1963 . Political Man: The Social Bases of Politics . Garden City, NY: Anchor.

——  1968 . Agrarian Socialism: The Cooperative Commonwealth Federation in Saskatchewan. A Study in Political Sociology . Garden City, NY: Doubleday.

——  Trow, M. A. and Coleman, J. S.   1956 . Union Democracy: The Internal Politics of the International Typographical Union . New York: Free Press.

Lynd, R. S. and Lynd, H. M. 1929/ 1956 . Middletown: A Study in American Culture . New York: Harcourt, Brace.

Mahoney, J. and Goertz, G.   2004 . The possibility principle: choosing negative cases in comparative research.   American Political Science Review , 98: 653–69.

Martin, L. L.   1992 . Coercive Cooperation: Explaining Multilateral Economic Sanctions .Princeton, NJ: Princeton University Press.

Mayo, D. G.   1996 . Error and the Growth of Experimental Knowledge . Chicago: University of Chicago Press.

Meckstroth, T.   1975 . “Most different systems” and “most similar systems:” a study in the logic of comparative inquiry.   Comparative Political Studies , 8: 133–77.

Miguel, E.   2004 . Tribe or nation: nation‐building and public goods in Kenya versus Tanzania.   World Politics , 56: 327–62. 10.1353/wp.2004.0018

Mill, J. S. 1843/ 1872 . The System of Logic , 8th edn. London: Longmans, Green.

Monroe, K. R.   1996 . The Heart of Altruism: Perceptions of a Common Humanity . Princeton, NJ: Princeton University Press.

Moore, B., Jr.   1966 . Social Origins of Dictatorship and Democracy: Lord and Peasant in the Making of the Modern World . Boston: Beacon Press.

Morgan, S. L. and Harding, D. J. 2005. Matching estimators of causal effects: from stratification and weighting to practical data analysis routines. Manuscript.

Moulder, F. V.   1977 . Japan, China and the Modern World Economy: Toward a Reinterpretation of East Asian Development ca. 1600 to ca. 1918 . Cambridge: Cambridge University Press.

Munck, G. L.   2004 . Tools for qualitative research. Pp. 105–21 in Rethinking Social Inquiry: Diverse Tools, Shared Standards , ed. H. E. Brady and D. Collier . Lanham, Md. : Rowman and Littlefield.

Njolstad, O.   1990 . Learning from history? Case studies and the limits to theory‐building. Pp. 220–46 in Arms Races: Technological and Political Dynamics , ed. O. Njolstad . Thousand Oaks, Calif.: Sage.

Patton, M. Q.   2002 . Qualitative Evaluation and Research Methods . Newbury Park, Calif.: Sage.

Popper, K. 1934/ 1968 . The Logic of Scientific Discovery . New York: Harper and Row.

——  1963 . Conjectures and Refutations . London: Routledge and Kegan Paul.

Posner, D.   2004 . The political salience of cultural difference: why Chewas and Tumbukas are allies in Zambia and adversaries in Malawi.   American Political Science Review , 98: 529–46.

Przeworski, A. and Teune, H.   1970 . The Logic of Comparative Social Inquiry . New York: John Wiley.

Queen, S.   1928 . Round table on the case study in sociological research.   Publications of the American Sociological Society, Papers and Proceedings , 22: 225–7.

Ragin, C. C.   2000 . Fuzzy‐set Social Science . Chicago: University of Chicago Press.

——  2004 . Turning the tables. Pp. 123–38 in Rethinking Social Inquiry: Diverse Tools, Shared Standards , ed. H. E. Brady and D. Collier.   Lanham, Md. : Rowman and Littlefield.

Reilly, B.   2000 –1. Democracy, ethnic fragmentation, and internal conflict: confused theories, faulty data, and the “crucial case” of Papua New Guinea.   International Security , 25: 162–85. 10.1162/016228800560552

——  and Phillpot, R.   2003 . “Making democracy work” in Papua New Guinea: social capital and provincial development in an ethnically fragmented society.   Asian Survey , 42: 906–27. 10.1525/as.2002.42.6.906

Rogowski, R.   1995 . The role of theory and anomaly in social‐scientific inference.   American Political Science Review , 89: 467–70. 10.2307/2082443

Rohlfing, I. 2004. Have you chosen the right case? Uncertainty in case selection for single case studies. Working Paper, International University, Bremen.

Rosenbaum, P. R.   2004 . Matching in observational studies. In Applied Bayesian Modeling and Causal Inference from an Incomplete‐data Perspective , ed. A. Gelman and X.‐L. Meng . New York: John Wiley.

——  and Silber, J. H.   2001 . Matching and thick description in an observational study of mortality after surgery.   Biostatistics , 2: 217–32. 10.1093/biostatistics/2.2.217

Ross, M.   2001 . Does oil hinder democracy?   World Politics , 53: 325–61. 10.1353/wp.2001.0011

Sagan, S. D.   1995 . Limits of Safety: Organizations, Accidents, and Nuclear Weapons . Princeton, NJ: Princeton University Press.

Sekhon, J. S.   2004 . Quality meets quantity: case studies, conditional probability and counter‐ factuals.   Perspectives in Politics , 2: 281–93.

Shafer, M. D.   1988 . Deadly Paradigms: The Failure of U.S. Counterinsurgency Policy . Princeton, NJ: Princeton University Press.

Skocpol, T.   1979 . States and Social Revolutions: A Comparative Analysis of France, Russia, and China . Cambridge: Cambridge University Press.

——  and Somers, M.   1980 . The uses of comparative history in macrosocial inquiry.   Comparative Studies in Society and History , 22: 147–97.

Stinchcombe, A. L.   1968 . Constructing Social Theories . New York: Harcourt, Brace.

Swank, D. H.   2002 . Global Capital, Political Institutions, and Policy Change in Developed Welfare States . Cambridge: Cambridge University Press.

Tendler, J.   1997 . Good Government in the Tropics . Baltimore: Johns Hopkins University Press.

Truman, D. B.   1951 . The Governmental Process . New York: Alfred A. Knopf.

Tsai, L.   2007 . Accountability without Democracy: How Solidary Groups Provide Public Goods in Rural China . Cambridge: Cambridge University Press.

Van Evera, S.   1997 . Guide to Methods for Students of Political Science . Ithaca, NY: Cornell University Press.

Wahlke, J. C.   1979 . Pre‐behavioralism in political science. American Political Science Review , 73: 9–31. 10.2307/1954728

Yashar, D. J.   2005 . Contesting Citizenship in Latin America: The Rise of Indigenous Movements and the Postliberal Challenge . Cambridge: Cambridge University Press.

Yin, R. K.   2004 . Case Study Anthology . Thousand Oaks, Calif.: Sage.

Gujarati (2003) ; Kennedy (2003) . Interestingly, the potential of cross‐case statistics in helping to choose cases for in‐depth analysis is recognized in some of the earliest discussions of the case‐study method (e.g. Queen 1928 , 226).

This expands on Mill (1843/1872 , 253), who wrote of scientific enquiry as twofold: “either inquiries into the cause of a given effect or into the effects or properties of a given cause.”

This method has not received much attention on the part of qualitative methodologists; hence, the absence of a generally recognized name. It bears some resemblance to J. S. Mill's Joint Method of Agreement and Difference ( Mill 1843/1872 ), which is to say a mixture of most‐similar and most‐different analysis, as discussed below. Patton (2002 , 234) employs the concept of “maximum variation (heterogeneity) sampling.”

More precisely, George and Smoke (1974 , 534, 522–36, ch. 18 ; see also discussion in Collier and Mahoney 1996 , 78) set out to investigate causal pathways and discovered, through the course of their investigation of many cases, these three causal types. Yet, for our purposes what is important is that the final sample includes at least one representative of each “type.”

For further examples see Collier and Mahoney (1996) ; Geddes (1990) ; Tendler (1997) .

Traditionally, methodologists have conceptualized cases as having “positive” or “negative” values (e.g. Emigh 1997 ; Mahoney and Goertz 2004 ; Ragin 2000 , 60; 2004 , 126).

Geddes (1990) ; King, Keohane, and Verba (1994) . See also discussion in Brady and Collier (2004) ; Collier and Mahoney (1996) ; Rogowski (1995) .

The exception would be a circumstance in which the researcher intends to disprove a deterministic argument ( Dion 1998 ).

Geddes (2003 , 131). For other examples of casework from the annals of medicine see “Clinical reports” in the Lancet , “Case studies” in Canadian Medical Association Journal , and various issues of the Journal of Obstetrics and Gynecology , often devoted to clinical cases (discussed in Jenicek 2001 , 7). For examples from the subfield of comparative politics see Kazancigil (1994) .

For a discussion of the important role of anomalies in the development of scientific theorizing see Elman (2003) ; Lakatos (1978) . For examples of deviant‐case research designs in the social sciences see Amenta (1991) ; Coppedge (2004) ; Eckstein (1975) ; Emigh (1997) ; Kendall and Wolf (1949/1955) .

For examples of the crucial‐case method see Bennett, Lepgold, and Unger (1994) ; Desch (2002) ; Goodin and Smitsman (2000) ; Kemp (1986) ; Reilly and Phillpot (2003) . For general discussion see George and Bennett (2005) ; Levy (2002) ; Stinchcombe (1968 , 24–8).

A third position, which purports to be neither Popperian or Bayesian, has been articulated by Mayo (1996 , ch. 6 ). From this perspective, the same idea is articulated as a matter of “severe tests.”

It should be noted that Tsai's conclusions do not rest solely on this crucial case. Indeed, she employs a broad range of methodological tools, encompassing case‐study and cross‐case methods.

See also the discussion in Eckstein (1975) and Lijphart (1969) . For additional examples of case studies disconfirming general propositions of a deterministic nature see Allen (1965); Lipset, Trow, and Coleman (1956) ; Njolstad (1990) ; Reilly (2000–1) ; and discussion in Dion (1998) ; Rogowski (1995) .

Granted, insofar as case‐study analysis provides a window into causal mechanisms, and causal mechanisms are integral to a given theory, a single case may be enlisted to confirm or disconfirm a proposition. However, if the case study upholds a posited pattern of X/Y covariation, and finds fault only with the stipulated causal mechanism, it would be more accurate to say that the study forces the reformulation of a given theory, rather than its confirmation or disconfirmation. See further discussion in the following section.

Sometimes, the most‐similar method is known as the “method of difference,” after its inventor ( Mill 1843/1872 ). For later treatments see Cohen and Nagel (1934) ; Eggan (1954) ; Gerring (2001 , ch. 9 ); Lijphart (1971 ; 1975) ; Meckstroth (1975) ; Przeworski and Teune (1970) ; Skocpol and Somers (1980) .

For good introductions see Ho et al. (2004) ; Morgan and Harding (2005) ; Rosenbaum (2004) ; Rosenbaum and Silber (2001) . For a discussion of matching procedures in Stata see Abadie et al. (2001) .

The most‐different method is also sometimes referred to as the “method of agreement,” following its inventor, J. S. Mill (1843/1872) . See also De Felice (1986) ; Gerring (2001 , 212–14); Lijphart (1971 ; 1975) ; Meckstroth (1975) ; Przeworski and Teune (1970) ; Skocpol and Somers (1980) . For examples of this method see Collier and Collier (1991/2002) ; Converse and Dupeux (1962) ; Karl (1997) ; Moore (1966) ; Skocpol (1979) ; Yashar (2005 , 23). However, most of these studies are described as combining most‐similar and most‐different methods.

In the following discussion I treat the terms social capital, civil society, and civic engagement interchangeably.

E.g. Collier and Collier (1991/2002) ; Karl (1997) ; Moore (1966) ; Skocpol (1979) ; Yashar (2005 , 23). Karl (1997) , which affects to be a most‐different system analysis (20), is a particularly clear example of this. Her study, focused ostensibly on petro‐states (states with large oil reserves), makes two sorts of inferences. The first concerns the (usually) obstructive role of oil in political and economic development. The second sort of inference concerns variation within the population of petro‐states, showing that some countries (e.g. Norway, Indonesia) manage to avoid the pathologies brought on elsewhere by oil resources. When attempting to explain the constraining role of oil on petro‐states, Karl usually relies on contrasts between petro‐states and nonpetro‐states (e.g. ch. 10 ). Only when attempting to explain differences among petro‐states does she restrict her sample to petro‐states. In my opinion, very little use is made of the most‐different research design.

This was recognized, at least implicitly, by Mill (1843/1872 , 258–9). Skepticism has been echoed by methodologists in the intervening years (e.g. Cohen and Nagel 1934 , 251–6; Gerring 2001 ; Skocpol and Somers 1980 ). Indeed, explicit defenses of the most‐different method are rare (but see De Felice 1986 ).

Another way of stating this is to say that X is a “nontrivial necessary condition” of Y .

Wahlke (1979 , 13) writes of the failings of the “behavioralist” mode of political science analysis: “It rarely aims at generalization; research efforts have been confined essentially to case studies of single political systems, most of them dealing …with the American system.”

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2023 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

719k Accesses

890 Citations

38 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports


The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].


The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references


We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

case study analysis in qualitative research


  1. Case Analysis Guide

    case study analysis in qualitative research

  2. A case_study_in_qualitative_research

    case study analysis in qualitative research

  3. Case Study Examples In Qualitative Research

    case study analysis in qualitative research

  4. PPT

    case study analysis in qualitative research

  5. How to write a case study qualitative research

    case study analysis in qualitative research

  6. case study analysis in qualitative research

    case study analysis in qualitative research


  1. Qualitative Research and Case Study

  2. Case study Analysis-Ratio Analysis

  3. Case Study

  4. Research Methodology ( Case study)

  5. Case Study

  6. Case Study Analysis and Presentation Techniques: Prof. Bholanath Dutta


  1. Why NVivo Is the Leading Choice for Qualitative Data Analysis Among Researchers

    Qualitative data analysis can be a daunting task, especially when dealing with large sets of data. This is where NVivo comes in handy. NVivo is a software package designed to assist researchers in analyzing qualitative data.

  2. What Are Some Similarities Between Qualitative and Quantitative Research?

    Quantitative and qualitative research methods are similar primarily because they are both methods of research that are limited by variables. Additionally, qualitative and quantitative research methods can be used to study the same phenomeno...

  3. What Are Some Examples of Case Studies?

    Examples of a case study could be anything from researching why a single subject has nightmares when they sleep in their new apartment, to why a group of people feel uncomfortable in heavily populated areas. A case study is an in-depth anal...

  4. Case Study Methodology of Qualitative Research: Key Attributes

    Case Studies are a qualitative design in which the researcher explores in depth a program, event, activity, process, or one or more individuals.

  5. (PDF) The case study as a type of qualitative research

    This study employed a qualitative case study methodology. The case study method is a research strategy that aims to gain an in-depth understanding of a specific

  6. Case Study

    This type of case study allows the researcher to: Learn about the complexity of an issue. Use purposeful sampling of cases that tailor

  7. Case Study Method: A Step-by-Step Guide for Business Researchers

    A qualitative case study assumes subjectivist epistemology. The in-depth case studies conducted by the authors can be taken as an example in

  8. Case Studies

    What are Case Studies? · The study of a particular case, or a number of cases. · That the case will be complex and bounded. · That it will be

  9. Case Studies

    An example of a qualitative case study is a life history which is the story of one specific person. A case study may be done to highlight a

  10. Methodology or method? A critical review of qualitative case study

    Case studies are designed to suit the case and research question and published case studies demonstrate wide diversity in study design. There

  11. Qualitative Case Study Guidelines

    Case study research involves intensive analysis of an individual unit [32]—e.g. a person, a community or an organisation. As such, case studies provide an

  12. Case Study as a Choice in Qualitative Methodology

    commitment to not only unearth rich and useful information but to situate it in context through analysis for the best possible meaning and report. II.

  13. Case Selection for Case‐Study Analysis: Qualitative and

    Case‐study analysis focuses on one or several cases that are expected to provide insight into a larger population. This presents the researcher with a

  14. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life