U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Single-Case Design, Analysis, and Quality Assessment for Intervention Research

Michele a. lobo.

1 Biomechanics & Movement Science Program, Department of Physical Therapy, University of Delaware, Newark, DE, USA

Mariola Moeyaert

2 Division of Educational Psychology & Methodology, State University of New York at Albany, Albany, NY, USA

Andrea Baraldi Cunha

Iryna babik, background and purpose.

The purpose of this article is to describe single-case studies, and contrast them with case studies and randomized clinical trials. We will highlight current research designs, analysis techniques, and quality appraisal tools relevant for single-case rehabilitation research.

Summary of Key Points

Single-case studies can provide a viable alternative to large group studies such as randomized clinical trials. Single case studies involve repeated measures, and manipulation of and independent variable. They can be designed to have strong internal validity for assessing causal relationships between interventions and outcomes, and external validity for generalizability of results, particularly when the study designs incorporate replication, randomization, and multiple participants. Single case studies should not be confused with case studies/series (ie, case reports), which are reports of clinical management of one patient or a small series of patients.

Recommendations for Clinical Practice

When rigorously designed, single-case studies can be particularly useful experimental designs in a variety of situations, even when researcher resources are limited, studied conditions have low incidences, or when examining effects of novel or expensive interventions. Readers will be directed to examples from the published literature in which these techniques have been discussed, evaluated for quality, and implemented.

Introduction

The purpose of this article is to present current tools and techniques relevant for single-case rehabilitation research. Single-case (SC) studies have been identified by a variety of names, including “n of 1 studies” and “single-subject” studies. The term “single-case study” is preferred over the previously mentioned terms because previous terms suggest these studies include only one participant. In fact, as will be discussed below, for purposes of replication and improved generalizability, the strongest SC studies commonly include more than one participant.

A SC study should not be confused with a “case study/series “ (also called “case report”. In a typical case study/series, a single patient or small series of patients is involved, but there is not a purposeful manipulation of an independent variable, nor are there necessarily repeated measures. Most case studies/series are reported in a narrative way while results of SC studies are presented numerically or graphically. 1 , 2 This article defines SC studies, contrasts them with randomized clinical trials, discusses how they can be used to scientifically test hypotheses, and highlights current research designs, analysis techniques, and quality appraisal tools that may be useful for rehabilitation researchers.

In SC studies, measurements of outcome (dependent variables) are recorded repeatedly for individual participants across time and varying levels of an intervention (independent variables). 1 – 5 These varying levels of intervention are referred to as “phases” with one phase serving as a baseline or comparison, so each participant serves as his/her own control. 2 In contrast to case studies and case series in which participants are observed across time without experimental manipulation of the independent variable, SC studies employ systematic manipulation of the independent variable to allow for hypothesis testing. 1 , 6 As a result, SC studies allow for rigorous experimental evaluation of intervention effects and provide a strong basis for establishing causal inferences. Advances in design and analysis techniques for SC studies observed in recent decades have made SC studies increasingly popular in educational and psychological research. Yet, the authors believe SC studies have been undervalued in rehabilitation research, where randomized clinical trials (RCTs) are typically recommended as the optimal research design to answer questions related to interventions. 7 In reality, there are advantages and disadvantages to both SC studies and RCTs that should be carefully considered in order to select the best design to answer individual research questions. While there are a variety of other research designs that could be utilized in rehabilitation research, only SC studies and RCTs are discussed here because SC studies are the focus of this article and RCTs are the most highly recommended design for intervention studies. 7

When designed and conducted properly, RCTs offer strong evidence that changes in outcomes may be related to provision of an intervention. However, RCTs require monetary, time, and personnel resources that many researchers, especially those in clinical settings, may not have available. 8 RCTs also require access to large numbers of consenting participants that meet strict inclusion and exclusion criteria that can limit variability of the sample and generalizability of results. 9 The requirement for large participant numbers may make RCTs difficult to perform in many settings, such as rural and suburban settings, and for many populations, such as those with diagnoses marked by lower prevalence. 8 To rely exclusively on RCTs has the potential to result in bodies of research that are skewed to address the needs of some individuals while neglecting the needs of others. RCTs aim to include a large number of participants and to use random group assignment to create study groups that are similar to one another in terms of all potential confounding variables, but it is challenging to identify all confounding variables. Finally, the results of RCTs are typically presented in terms of group means and standard deviations that may not represent true performance of any one participant. 10 This can present as a challenge for clinicians aiming to translate and implement these group findings at the level of the individual.

SC studies can provide a scientifically rigorous alternative to RCTs for experimentally determining the effectiveness of interventions. 1 , 2 SC studies can assess a variety of research questions, settings, cases, independent variables, and outcomes. 11 There are many benefits to SC studies that make them appealing for intervention research. SC studies may require fewer resources than RCTs and can be performed in settings and with populations that do not allow for large numbers of participants. 1 , 2 In SC studies, each participant serves as his/her own comparison, thus controlling for many confounding variables that can impact outcome in rehabilitation research, such as gender, age, socioeconomic level, cognition, home environment, and concurrent interventions. 2 , 11 Results can be analyzed and presented to determine whether interventions resulted in changes at the level of the individual, the level at which rehabilitation professionals intervene. 2 , 12 When properly designed and executed, SC studies can demonstrate strong internal validity to determine the likelihood of a causal relationship between the intervention and outcomes and external validity to generalize the findings to broader settings and populations. 2 , 12 , 13

Single Case Research Designs for Intervention Research

There are a variety of SC designs that can be used to study the effectiveness of interventions. Here we discuss: 1) AB designs, 2) reversal designs, 3) multiple baseline designs, and 4) alternating treatment designs, as well as ways replication and randomization techniques can be used to improve internal validity of all of these designs. 1 – 3 , 12 – 14

The simplest of these designs is the AB Design 15 ( Figure 1 ). This design involves repeated measurement of outcome variables throughout a baseline control/comparison phase (A ) and then throughout an intervention phase (B). When possible, it is recommended that a stable level and/or rate of change in performance be observed within the baseline phase before transitioning into the intervention phase. 2 As with all SC designs, it is also recommended that there be a minimum of five data points in each phase. 1 , 2 There is no randomization or replication of the baseline or intervention phases in the basic AB design. 2 Therefore, AB designs have problems with internal validity and generalizability of results. 12 They are weak in establishing causality because changes in outcome variables could be related to a variety of other factors, including maturation, experience, learning, and practice effects. 2 , 12 Sample data from a single case AB study performed to assess the impact of Floor Play intervention on social interaction and communication skills for a child with autism 15 are shown in Figure 1 .

An external file that holds a picture, illustration, etc.
Object name is nihms870756f1.jpg

An example of results from a single-case AB study conducted on one participant with autism; two weeks of observation (baseline phase A) were followed by seven weeks of Floor Time Play (intervention phase B). The outcome measure Circles of Communications (reciprocal communication with two participants responding to each other verbally or nonverbally) served as a behavioral indicator of the child’s social interaction and communication skills (higher scores indicating better performance). A statistically significant improvement in Circles of Communication was found during the intervention phase as compared to the baseline. Note that although a stable baseline is recommended for SC studies, it is not always possible to satisfy this requirement, as you will see in Figures 1 – 4 . Data were extracted from Dionne and Martini (2011) 15 utilizing Rohatgi’s WebPlotDigitizer software. 78

If an intervention does not have carry-over effects, it is recommended to use a Reversal Design . 2 For example, a reversal A 1 BA 2 design 16 ( Figure 2 ) includes alternation of the baseline and intervention phases, whereas a reversal A 1 B 1 A 2 B 2 design 17 ( Figure 3 ) consists of alternation of two baseline (A 1 , A 2 ) and two intervention (B 1 , B 2 ) phases. Incorporating at least four phases in the reversal design (i.e., A 1 B 1 A 2 B 2 or A 1 B 1 A 2 B 2 A 3 B 3 …) allows for a stronger determination of a causal relationship between the intervention and outcome variables, because the relationship can be demonstrated across at least three different points in time – change in outcome from A 1 to B 1 , from B 1 to A 2 , and from A 2 to B 2 . 18 Before using this design, however, researchers must determine that it is safe and ethical to withdraw the intervention, especially in cases where the intervention is effective and necessary. 12

An external file that holds a picture, illustration, etc.
Object name is nihms870756f2.jpg

An example of results from a single-case A 1 BA 2 study conducted on eight participants with stable multiple sclerosis (data on three participants were used for this example). Four weeks of observation (baseline phase A 1 ) were followed by eight weeks of core stability training (intervention phase B), then another four weeks of observation (baseline phase A 2 ). Forward functional reach test (the maximal distance the participant can reach forward or lateral beyond arm’s length, maintaining a fixed base of support in the standing position; higher scores indicating better performance) significantly improved during intervention for Participants 1 and 3 without further improvement observed following withdrawal of the intervention (during baseline phase A 2 ). Data were extracted from Freeman et al. (2010) 16 utilizing Rohatgi’s WebPlotDigitizer software. 78

An external file that holds a picture, illustration, etc.
Object name is nihms870756f3a.jpg

An example of results from a single-case A 1 B 1 A 2 B 2 study conducted on two participants with severe unilateral neglect after a right-hemisphere stroke. Two weeks of conventional treatment (baseline phases A 1, A 2 ) alternated with two weeks of visuo-spatio-motor cueing (intervention phases B 1 , B 2 ). Performance was assessed in two tests of lateral neglect, the Bells Cancellation Test (Figure A; lower scores indicating better performance) and the Line Bisection Test (Figure B; higher scores indicating better performance). There was a statistically significant intervention-related improvement in participants’ performance on the Line Bisection Test, but not on the Bells Test. Data were extracted from Samuel at al. (2000) 17 utilizing Rohatgi’s WebPlotDigitizer software. 78

A recent study used an ABA reversal SC study to determine the effectiveness of core stability training in 8 participants with multiple sclerosis. 16 During the first four weekly data collections, the researchers ensured a stable baseline, which was followed by eight weekly intervention data points, and concluded with four weekly withdrawal data points. Intervention significantly improved participants’ walking and reaching performance ( Figure 2 ). 16 This A 1 BA 2 design could have been strengthened by the addition of a second intervention phase for replication (A 1 B 1 A 2 B 2 ). For instance, a single-case A 1 B 1 A 2 B 2 withdrawal design aimed to assess the efficacy of rehabilitation using visuo-spatio-motor cueing for two participants with severe unilateral neglect after a severe right-hemisphere stroke. 17 Each phase included 8 data points. Statistically significant intervention-related improvement was observed, suggesting that visuo-spatio-motor cueing might be promising for treating individuals with very severe neglect ( Figure 3 ). 17

The reversal design can also incorporate a cross over design where each participant experiences more than one type of intervention. For instance, a B 1 C 1 B 2 C 2 design could be used to study the effects of two different interventions (B and C) on outcome measures. Challenges with including more than one intervention involve potential carry-over effects from earlier interventions and order effects that may impact the measured effectiveness of the interventions. 2 , 12 Including multiple participants and randomizing the order of intervention phase presentations are tools to help control for these types of effects. 19

When an intervention permanently changes an individual’s ability, a return to baseline performance is not feasible and reversal designs are not appropriate. Multiple Baseline Designs (MBDs) are useful in these situations ( Figure 4 ). 20 MBDs feature staggered introduction of the intervention across time: each participant is randomly assigned to one of at least 3 experimental conditions characterized by the length of the baseline phase. 21 These studies involve more than one participant, thus functioning as SC studies with replication across participants. Staggered introduction of the intervention allows for separation of intervention effects from those of maturation, experience, learning, and practice. For example, a multiple baseline SC study was used to investigate the effect of an anti-spasticity baclofen medication on stiffness in five adult males with spinal cord injury. 20 The subjects were randomly assigned to receive 5–9 baseline data points with a placebo treatment prior to the initiation of the intervention phase with the medication. Both participants and assessors were blind to the experimental condition. The results suggested that baclofen might not be a universal treatment choice for all individuals with spasticity resulting from a traumatic spinal cord injury ( Figure 4 ). 20

An external file that holds a picture, illustration, etc.
Object name is nihms870756f4.jpg

An example of results from a single-case multiple baseline study conducted on five participants with spasticity due to traumatic spinal cord injury. Total duration of data collection was nine weeks. The first participant was switched from placebo treatment (baseline) to baclofen treatment (intervention) after five data collection sessions, whereas each consecutive participant was switched to baclofen intervention at the subsequent sessions through the ninth session. There was no statistically significant effect of baclofen on viscous stiffness at the ankle joint. Data were extracted from Hinderer at al. (1990) 20 utilizing Rohatgi’s WebPlotDigitizer software. 78

The impact of two or more interventions can also be assessed via Alternating Treatment Designs (ATDs) . In ATDs, after establishing the baseline, the experimenter exposes subjects to different intervention conditions administered in close proximity for equal intervals ( Figure 5 ). 22 ATDs are prone to “carry-over effects” when the effects of one intervention influence the observed outcomes of another intervention. 1 As a result, such designs introduce unique challenges when attempting to determine the effects of any one intervention and have been less commonly utilized in rehabilitation. An ATD was used to monitor disruptive behaviors in the school setting throughout a baseline followed by an alternating treatment phase with randomized presentation of a control condition or an exercise condition. 23 Results showed that 30 minutes of moderate to intense physical activity decreased behavioral disruptions through 90 minutes after the intervention. 23 An ATD was also used to compare the effects of commercially available and custom-made video prompts on the performance of multi-step cooking tasks in four participants with autism. 22 Results showed that participants independently performed more steps with the custom-made video prompts ( Figure 5 ). 22

An external file that holds a picture, illustration, etc.
Object name is nihms870756f5a.jpg

An example of results from a single case alternating treatment study conducted on four participants with autism (data on two participants were used for this example). After the observation phase (baseline), effects of commercially available and custom-made video prompts on the performance of multi-step cooking tasks were identified (treatment phase), after which only the best treatment was used (best treatment phase). Custom-made video prompts were most effective for improving participants’ performance of multi-step cooking tasks. Data were extracted from Mechling at al. (2013) 22 utilizing Rohatgi’s WebPlotDigitizer software. 78

Regardless of the SC study design, replication and randomization should be incorporated when possible to improve internal and external validity. 11 The reversal design is an example of replication across study phases. The minimum number of phase replications needed to meet quality standards is three (A 1 B 1 A 2 B 2 ), but having four or more replications is highly recommended (A 1 B 1 A 2 B 2 A 3 …). 11 , 14 In cases when interventions aim to produce lasting changes in participants’ abilities, replication of findings may be demonstrated by replicating intervention effects across multiple participants (as in multiple-participant AB designs), or across multiple settings, tasks, or service providers. When the results of an intervention are replicated across multiple reversals, participants, and/or contexts, there is an increased likelihood a causal relationship exists between the intervention and the outcome. 2 , 12

Randomization should be incorporated in SC studies to improve internal validity and the ability to assess for causal relationships among interventions and outcomes. 11 In contrast to traditional group designs, SC studies often do not have multiple participants or units that can be randomly assigned to different intervention conditions. Instead, in randomized phase-order designs , the sequence of phases is randomized. Simple or block randomization is possible. For example, with simple randomization for an A 1 B 1 A 2 B 2 design, the A and B conditions are treated as separate units and are randomly assigned to be administered for each of the pre-defined data collection points. As a result, any combination of A-B sequences is possible without restrictions on the number of times each condition is administered or regard for repetitions of conditions (e.g., A 1 B 1 B 2 A 2 B 3 B 4 B 5 A 3 B 6 A 4 A 5 A 6 ). With block randomization for an A 1 B 1 A 2 B 2 design, two conditions (e.g., A and B) would be blocked into a single unit (AB or BA), randomization of which to different time periods would ensure that each condition appears in the resulting sequence more than two times (e.g., A 1 B 1 B 2 A 2 A 3 B 3 A 4 B 4 ). Note that AB and reversal designs require that the baseline (A) always precedes the first intervention (B), which should be accounted for in the randomization scheme. 2 , 11

In randomized phase start-point designs , the lengths of the A and B phases can be randomized. 2 , 11 , 24 – 26 For example, for an AB design, researchers could specify the number of time points at which outcome data will be collected, (e.g., 20), define the minimum number of data points desired in each phase (e.g., 4 for A, 3 for B), and then randomize the initiation of the intervention so that it occurs anywhere between the remaining time points (points 5 and 17 in the current example). 27 , 28 For multiple-baseline designs, a dual-randomization, or “regulated randomization” procedure has been recommended. 29 If multiple-baseline randomization depends solely on chance, it could be the case that all units are assigned to begin intervention at points not really separated in time. 30 Such randomly selected initiation of the intervention would result in the drastic reduction of the discriminant and internal validity of the study. 29 To eliminate this issue, investigators should first specify appropriate intervals between the start points for different units, then randomly select from those intervals, and finally randomly assign each unit to a start point. 29

Single Case Analysis Techniques for Intervention Research

The What Works Clearinghouse (WWC) single-case design technical documentation provides an excellent overview of appropriate SC study analysis techniques to evaluate the effectiveness of intervention effects. 1 , 18 First, visual analyses are recommended to determine whether there is a functional relation between the intervention and the outcome. Second, if evidence for a functional effect is present, the visual analysis is supplemented with quantitative analysis methods evaluating the magnitude of the intervention effect. Third, effect sizes are combined across cases to estimate overall average intervention effects which contributes to evidence-based practice, theory, and future applications. 2 , 18

Visual Analysis

Traditionally, SC study data are presented graphically. When more than one participant engages in a study, a spaghetti plot showing all of their data in the same figure can be helpful for visualization. Visual analysis of graphed data has been the traditional method for evaluating treatment effects in SC research. 1 , 12 , 31 , 32 The visual analysis involves evaluating level, trend, and stability of the data within each phase (i.e., within-phase data examination) followed by examination of the immediacy of effect, consistency of data patterns, and overlap of data between baseline and intervention phases (i.e., between-phase comparisons). When the changes (and/or variability) in level are in the desired direction, are immediate, readily discernible, and maintained over time, it is concluded that the changes in behavior across phases result from the implemented treatment and are indicative of improvement. 33 Three demonstrations of an intervention effect are necessary for establishing a functional relation. 1

Within-phase examination

Level, trend, and stability of the data within each phase are evaluated. Mean and/or median can be used to report the level, and trend can be evaluated by determining whether the data points are monotonically increasing or decreasing. Within-phase stability can be evaluated by calculating the percentage of data points within 15% of the phase median (or mean). The stability criterion is satisfied if about 85% (80% – 90%) of the data in a phase fall within a 15% range of the median (or average) of all data points for that phase. 34

Between-phase examination

Immediacy of effect, consistency of data patterns, and overlap of data between baseline and intervention phases are evaluated next. For this, several nonoverlap indices have been proposed that all quantify the proportion of measurements in the intervention phase not overlapping with the baseline measurements. 35 Nonoverlap statistics are typically scaled as percent from 0 to 100, or as a proportion from 0 to 1. Here, we briefly discuss the Nonoverlap of All Pairs ( NAP ), 36 the Extended Celeration Line ( ECL ), the Improvement Rate Difference ( IRD) , 37 and the TauU and the TauU-adjusted, TauU adj , 35 as these are the most recent and complete techniques. We also examine the Percentage of Nonoverlapping Data ( PND ) 38 and the Two Standard Deviations Band Method, as these are frequently used techniques. In addition, we include the Percentage of Nonoverlapping Corrected Data ( PNCD ) – an index applying to the PND after controlling for baseline trend. 39

Nonoverlap of all pairs (NAP)

Each baseline observation can be paired with each intervention phase observation to make n pairs (i.e., N = n A * n B ). Count the number of overlapping pairs, n o , counting all ties as 0.5. Then define the percent of the pairs that show no overlap. Alternatively, one can count the number of positive (P), negative (N), and tied (T) pairs 2 , 36 :

Extended Celeration Line (ECL)

ECL or split middle line allows control for a positive Phase A trend. Nonoverlap is defined as the proportion of Phase B ( n b ) data that are above the median trend plotted from Phase A data ( n B< sub > Above Median trend A </ sub > ), but then extended into Phase B: ECL = n B Above Median trend A n b ∗ 100

As a consequence, this method depends on a straight line and makes an assumption of linearity in the baseline. 2 , 12

Improvement rate difference (IRD)

This analysis is conceptualized as the difference in improvement rates (IR) between baseline ( IR B ) and intervention phases ( IR T ). 38 The IR for each phase is defined as the number of “improved data points” divided by the total data points in that phase. IRD, commonly employed in medical group research under the name of “risk reduction” or “risk difference” attempts to provide an intuitive interpretation for nonoverlap and to make use of an established, respected effect size, IR B - IR B , or the difference between two proportions. 37

TauU and TauU adj

Each baseline observation can be paired with each intervention phase observation to make n pairs (i.e., n = n A * n B ). Count the number of positive (P), negative (N), and tied (T) pairs, and use the following formula: TauU = P - N P + N + τ

The TauU adj is an adjustment of TauU for monotonic trend in baseline. Each baseline observation can be paired with each intervention phase observation to make n pairs (i.e., n = n A * n B ). Each baseline observation can be paired with all later baseline observations (n A *(n A -1)/2). 2 , 35 Then the baseline trend can be computed: TauU adf = P - N - S trend P + N + τ ; S trend = P A – NA

Online calculators might assist researchers in obtaining the TauU and TauU adjusted coefficients ( http://www.singlecaseresearch.org/calculators/tau-u ).

Percentage of nonoverlapping data (PND)

If anticipating an increase in the outcome, locate the highest data point in the baseline phase and then calculate the percent of the intervention phase data points that exceed it. If anticipating a decrease in the outcome, find the lowest data point in the baseline phase and then calculate the percent of the treatment phase data points that are below it: PND = n B Overlap A n b ∗ 100 . A PND < 50 would mark no observed effect, PND = 50–70 signifies a questionable effect, and PND > 70 suggests the intervention was effective. 40 The percentage of nonoverlapping (PNDC) corrected was proposed in 2009 as an extension of the PND. 39 Prior to applying the PND, a data correction procedure is applied eliminating pre-existing baseline trend. 38

Two Standard Deviation Band Method

When the stability criterion described above is met within phases, it is possible to apply the two standard deviation band method. 12 , 41 First, the mean of the data for a specific condition is calculated and represented with a solid line. In the next step, the standard deviation of the same data is computed and two dashed lines are represented: one located two standard deviations above the mean and the other – two standard deviations below. For normally distributed data, few points (less than 5%) are expected to be outside the two standard deviation bands if there is no change in the outcome score due to the intervention. However, this method is not considered a formal statistical procedure, as the data cannot typically be assumed to be normal, continuous, or independent. 41

Statistical Analysis

If the visual analysis indicates a functional relationship (i.e., three demonstrations of the effectiveness of the intervention effect), it is recommended to proceed with the quantitative analyses, reflecting the magnitude of the intervention effect. First, effect sizes are calculated for each participant (individual-level analysis). Moreover, if the research interest lies in the generalizability of the effect size across participants, effect sizes can be combined across cases to achieve an overall average effect size estimate (across-case effect size).

Note that quantitative analysis methods are still being developed in the domain of SC research 1 and statistical challenges of producing an acceptable measure of treatment effect remain. 14 , 42 , 43 Therefore, the WWC standards strongly recommend conducting sensitivity analysis and reporting multiple effect size estimators. If consistency across different effect size estimators is identified, there is stronger evidence for the effectiveness of the treatment. 1 , 18

Individual-level effect size analysis

The most common effect sizes recommended for SC analysis are: 1) standardized mean difference Cohen’s d ; 2) standardized mean difference with correction for small sample sizes Hedges’ g ; and 3) the regression-based approach which has the most potential and is strongly recommended by the WWC standards. 1 , 44 , 45 Cohen’s d can be calculated using following formula: d = X A ¯ - X B ¯ s p , with X A ¯ being the baseline mean, X B ¯ being the treatment mean, and s p indicating the pooled within-case standard deviation. Hedges’ g is an extension of Cohen’s d , recommended in the context of SC studies as it corrects for small sample sizes. The piecewise regression-based approach does not only reflect the immediate intervention effect, but also the intervention effect across time:

i stands for the measurement occasion ( i = 0, 1,… I ). The dependent variable is regressed on a time indicator, T , which is centered around the first observation of the intervention phase, D , a dummy variable for the intervention phase, and an interaction term of these variables. The equation shows that the expected score, Ŷ i , equals β 0 + β 1 T i in the baseline phase, and ( β 0 + β 2 ) + ( β 1 + β 3 ) T i in the intervention phase. β 0 , therefore, indicates the expected baseline level at the start of the intervention phase (when T = 0), whereas β 1 marks the linear time trend in the baseline scores. The coefficient β 2 can then be interpreted as an immediate effect of the intervention on the outcome, whereas β 3 signifies the effect of the intervention across time. The e i ’s are residuals assumed to be normally distributed around a mean of zero with a variance of σ e 2 . The assumption of independence of errors is usually not met in the context of SC studies because repeated measures are obtained within a person. As a consequence, it can be the case that the residuals are autocorrelated, meaning that errors closer in time are more related to each other compared to errors further away in time. 46 – 48 As a consequence, a lag-1 autocorrelation is appropriate (taking into account the correlation between two consecutive errors: e i and e i –1 ; for more details see Verbeke & Molenberghs, (2000). 49 In Equation 1 , ρ indicates the autocorrelation parameter. If ρ is positive, the errors closer in time are more similar; if ρ is negative, the errors closer in time are more different, and if ρ equals zero, there is no correlation between the errors.

Across-case effect sizes

Two-level modeling to estimate the intervention effects across cases can be used to evaluate across-case effect sizes. 44 , 45 , 50 Multilevel modeling is recommended by the WWC standards because it takes the hierarchical nature of SC studies into account: measurements are nested within cases and cases, in turn, are nested within studies. By conducting a multilevel analysis, important research questions can be addressed (which cannot be answered by single-level analysis of SC study data), such as: 1) What is the magnitude of the average treatment effect across cases? 2) What is the magnitude and direction of the case-specific intervention effect? 3) How much does the treatment effect vary within cases and across cases? 4) Does a case and/or study level predictor influence the treatment’s effect? The two-level model has been validated in previous research using extensive simulation studies. 45 , 46 , 51 The two-level model appears to have sufficient power (> .80) to detect large treatment effects in at least six participants with six measurements. 21

Furthermore, to estimate the across-case effect sizes, the HPS (Hedges, Pustejovsky, and Shadish) , or single-case educational design ( SCEdD)-specific mean difference, index can be calculated. 52 This is a standardized mean difference index specifically designed for SCEdD data, with the aim of making it comparable to Cohen’s d of group-comparison designs. The standard deviation takes into account both within-participant and between-participant variability, and is typically used to get an across-case estimator for a standardized change in level. The advantage of using the HPS across-case effect size estimator is that it is directly comparable with Cohen’s d for group comparison research, thus enabling the use of Cohen’s (1988) benchmarks. 53

Valuable recommendations on SC data analyses have recently been provided. 54 , 55 They suggest that a specific SC study data analytic technique can be chosen based on: (1) the study aims and the desired quantification (e.g., overall quantification, between-phase quantifications, randomization, etc.), (2) the data characteristics as assessed by visual inspection and the assumptions one is willing to make about the data, and (3) the knowledge and computational resources. 54 , 55 Table 1 lists recommended readings and some commonly used resources related to the design and analysis of single-case studies.

Recommend readings and resources related to the design and analysis of single-case studies.

Quality Appraisal Tools for Single-Case Design Research

Quality appraisal tools are important to guide researchers in designing strong experiments and conducting high-quality systematic reviews of the literature. Unfortunately, quality assessment tools for SC studies are relatively novel, ratings across tools demonstrate variability, and there is currently no “gold standard” tool. 56 Table 2 lists important SC study quality appraisal criteria compiled from the most common scales; when planning studies or reviewing the literature, we recommend readers consider these criteria. Table 3 lists some commonly used SC quality assessment and reporting tools and references to resources where the tools can be located.

Summary of important single-case study quality appraisal criteria.

Quality assessment and reporting tools related to single-case studies.

When an established tool is required for systematic review, we recommend use of the What Works Clearinghouse (WWC) Tool because it has well-defined criteria and is developed and supported by leading experts in the SC research field in association with the Institute of Education Sciences. 18 The WWC documentation provides clear standards and procedures to evaluate the quality of SC research; it assesses the internal validity of SC studies, classifying them as “Meeting Standards”, “Meeting Standards with Reservations”, or “Not Meeting Standards”. 1 , 18 Only studies classified in the first two categories are recommended for further visual analysis. Also, WWC evaluates the evidence of effect, classifying studies into “Strong Evidence of a Causal Relation”, “Moderate Evidence of a Causal Relation”, or “No Evidence of a Causal Relation”. Effect size should only be calculated for studies providing strong or moderate evidence of a causal relation.

The Single-Case Reporting Guideline In BEhavioural Interventions (SCRIBE) 2016 is another useful SC research tool developed recently to improve the quality of single-case designs. 57 SCRIBE consists of a 26-item checklist that researchers need to address while reporting the results of SC studies. This practical checklist allows for critical evaluation of SC studies during study planning, manuscript preparation, and review.

Single-case studies can be designed and analyzed in a rigorous manner that allows researchers strength in assessing causal relationships among interventions and outcomes, and in generalizing their results. 2 , 12 These studies can be strengthened via incorporating replication of findings across multiple study phases, participants, settings, or contexts, and by using randomization of conditions or phase lengths. 11 There are a variety of tools that can allow researchers to objectively analyze findings from SC studies. 56 While a variety of quality assessment tools exist for SC studies, they can be difficult to locate and utilize without experience, and different tools can provide variable results. The WWC quality assessment tool is recommended for those aiming to systematically review SC studies. 1 , 18

SC studies, like all types of study designs, have a variety of limitations. First, it can be challenging to collect at least five data points in a given study phase. This may be especially true when traveling for data collection is difficult for participants, or during the baseline phase when delaying intervention may not be safe or ethical. Power in SC studies is related to the number of data points gathered for each participant so it is important to avoid having a limited number of data points. 12 , 58 Second, SC studies are not always designed in a rigorous manner and, thus, may have poor internal validity. This limitation can be overcome by addressing key characteristics that strengthen SC designs ( Table 2 ). 1 , 14 , 18 Third, SC studies may have poor generalizability. This limitation can be overcome by including a greater number of participants, or units. Fourth, SC studies may require consultation from expert methodologists and statisticians to ensure proper study design and data analysis, especially to manage issues like autocorrelation and variability of data. 2 Fifth, while it is recommended to achieve a stable level and rate of performance throughout the baseline, human performance is quite variable and can make this requirement challenging. Finally, the most important validity threat to SC studies is maturation. This challenge must be considered during the design process in order to strengthen SC studies. 1 , 2 , 12 , 58

SC studies can be particularly useful for rehabilitation research. They allow researchers to closely track and report change at the level of the individual. They may require fewer resources and, thus, can allow for high-quality experimental research, even in clinical settings. Furthermore, they provide a tool for assessing causal relationships in populations and settings where large numbers of participants are not accessible. For all of these reasons, SC studies can serve as an effective method for assessing the impact of interventions.

Acknowledgments

This research was supported by the National Institute of Health, Eunice Kennedy Shriver National Institute of Child Health & Human Development (1R21HD076092-01A1, Lobo PI) and the Delaware Economic Development Office (Grant #109).

Some of the information in this manuscript was presented at the IV Step Meeting in Columbus, OH, June 2016.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Published: 22 November 2022

Single case studies are a powerful tool for developing, testing and extending theories

  • Lyndsey Nickels   ORCID: orcid.org/0000-0002-0311-3524 1 , 2 ,
  • Simon Fischer-Baum   ORCID: orcid.org/0000-0002-6067-0538 3 &
  • Wendy Best   ORCID: orcid.org/0000-0001-8375-5916 4  

Nature Reviews Psychology volume  1 ,  pages 733–747 ( 2022 ) Cite this article

573 Accesses

5 Citations

26 Altmetric

Metrics details

  • Neurological disorders

Psychology embraces a diverse range of methodologies. However, most rely on averaging group data to draw conclusions. In this Perspective, we argue that single case methodology is a valuable tool for developing and extending psychological theories. We stress the importance of single case and case series research, drawing on classic and contemporary cases in which cognitive and perceptual deficits provide insights into typical cognitive processes in domains such as memory, delusions, reading and face perception. We unpack the key features of single case methodology, describe its strengths, its value in adjudicating between theories, and outline its benefits for a better understanding of deficits and hence more appropriate interventions. The unique insights that single case studies have provided illustrate the value of in-depth investigation within an individual. Single case methodology has an important place in the psychologist’s toolkit and it should be valued as a primary research tool.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

55,14 € per year

only 4,60 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

single case research designs have been criticized because

Corkin, S. Permanent Present Tense: The Unforgettable Life Of The Amnesic Patient, H. M . Vol. XIX, 364 (Basic Books, 2013).

Lilienfeld, S. O. Psychology: From Inquiry To Understanding (Pearson, 2019).

Schacter, D. L., Gilbert, D. T., Nock, M. K. & Wegner, D. M. Psychology (Worth Publishers, 2019).

Eysenck, M. W. & Brysbaert, M. Fundamentals Of Cognition (Routledge, 2018).

Squire, L. R. Memory and brain systems: 1969–2009. J. Neurosci. 29 , 12711–12716 (2009).

Article   PubMed   PubMed Central   Google Scholar  

Corkin, S. What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3 , 153–160 (2002).

Article   PubMed   Google Scholar  

Schubert, T. M. et al. Lack of awareness despite complex visual processing: evidence from event-related potentials in a case of selective metamorphopsia. Proc. Natl Acad. Sci. USA 117 , 16055–16064 (2020).

Behrmann, M. & Plaut, D. C. Bilateral hemispheric processing of words and faces: evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cereb. Cortex 24 , 1102–1118 (2014).

Plaut, D. C. & Behrmann, M. Complementary neural representations for faces and words: a computational exploration. Cogn. Neuropsychol. 28 , 251–275 (2011).

Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293 , 2425–2430 (2001).

Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113 , 8162–8167 (2016).

Kosakowski, H. L. et al. Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. Curr. Biol. 32 , 265–274.e5 (2022).

Harlow, J. Passage of an iron rod through the head. Boston Med. Surgical J . https://doi.org/10.1176/jnp.11.2.281 (1848).

Broca, P. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech). Bull. Soc. Anat. 6 , 330–357 (1861).

Google Scholar  

Dejerine, J. Contribution A L’étude Anatomo-pathologique Et Clinique Des Différentes Variétés De Cécité Verbale: I. Cécité Verbale Avec Agraphie Ou Troubles Très Marqués De L’écriture; II. Cécité Verbale Pure Avec Intégrité De L’écriture Spontanée Et Sous Dictée (Société de Biologie, 1892).

Liepmann, H. Das Krankheitsbild der Apraxie (“motorischen Asymbolie”) auf Grund eines Falles von einseitiger Apraxie (Fortsetzung). Eur. Neurol. 8 , 102–116 (1900).

Article   Google Scholar  

Basso, A., Spinnler, H., Vallar, G. & Zanobio, M. E. Left hemisphere damage and selective impairment of auditory verbal short-term memory. A case study. Neuropsychologia 20 , 263–274 (1982).

Humphreys, G. W. & Riddoch, M. J. The fractionation of visual agnosia. In Visual Object Processing: A Cognitive Neuropsychological Approach 281–306 (Lawrence Erlbaum, 1987).

Whitworth, A., Webster, J. & Howard, D. A Cognitive Neuropsychological Approach To Assessment And Intervention In Aphasia (Psychology Press, 2014).

Caramazza, A. On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn. 5 , 41–66 (1986).

Caramazza, A. & McCloskey, M. The case for single-patient studies. Cogn. Neuropsychol. 5 , 517–527 (1988).

Shallice, T. Cognitive neuropsychology and its vicissitudes: the fate of Caramazza’s axioms. Cogn. Neuropsychol. 32 , 385–411 (2015).

Shallice, T. From Neuropsychology To Mental Structure (Cambridge Univ. Press, 1988).

Coltheart, M. Assumptions and methods in cognitive neuropscyhology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 3–22 (Psychology Press, 2001).

McCloskey, M. & Chaisilprungraung, T. The value of cognitive neuropsychology: the case of vision research. Cogn. Neuropsychol. 34 , 412–419 (2017).

McCloskey, M. The future of cognitive neuropsychology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 593–610 (Psychology Press, 2001).

Lashley, K. S. In search of the engram. In Physiological Mechanisms in Animal Behavior 454–482 (Academic Press, 1950).

Squire, L. R. & Wixted, J. T. The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34 , 259–288 (2011).

Stone, G. O., Vanhoy, M. & Orden, G. C. V. Perception is a two-way street: feedforward and feedback phonology in visual word recognition. J. Mem. Lang. 36 , 337–359 (1997).

Perfetti, C. A. The psycholinguistics of spelling and reading. In Learning To Spell: Research, Theory, And Practice Across Languages 21–38 (Lawrence Erlbaum, 1997).

Nickels, L. The autocue? self-generated phonemic cues in the treatment of a disorder of reading and naming. Cogn. Neuropsychol. 9 , 155–182 (1992).

Rapp, B., Benzing, L. & Caramazza, A. The autonomy of lexical orthography. Cogn. Neuropsychol. 14 , 71–104 (1997).

Bonin, P., Roux, S. & Barry, C. Translating nonverbal pictures into verbal word names. Understanding lexical access and retrieval. In Past, Present, And Future Contributions Of Cognitive Writing Research To Cognitive Psychology 315–522 (Psychology Press, 2011).

Bonin, P., Fayol, M. & Gombert, J.-E. Role of phonological and orthographic codes in picture naming and writing: an interference paradigm study. Cah. Psychol. Cogn./Current Psychol. Cogn. 16 , 299–324 (1997).

Bonin, P., Fayol, M. & Peereman, R. Masked form priming in writing words from pictures: evidence for direct retrieval of orthographic codes. Acta Psychol. 99 , 311–328 (1998).

Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8 , 551–565 (1996).

Jeffreys, D. A. Evoked potential studies of face and object processing. Vis. Cogn. 3 , 1–38 (1996).

Laganaro, M., Morand, S., Michel, C. M., Spinelli, L. & Schnider, A. ERP correlates of word production before and after stroke in an aphasic patient. J. Cogn. Neurosci. 23 , 374–381 (2011).

Indefrey, P. & Levelt, W. J. M. The spatial and temporal signatures of word production components. Cognition 92 , 101–144 (2004).

Valente, A., Burki, A. & Laganaro, M. ERP correlates of word production predictors in picture naming: a trial by trial multiple regression analysis from stimulus onset to response. Front. Neurosci. 8 , 390 (2014).

Kittredge, A. K., Dell, G. S., Verkuilen, J. & Schwartz, M. F. Where is the effect of frequency in word production? Insights from aphasic picture-naming errors. Cogn. Neuropsychol. 25 , 463–492 (2008).

Domdei, N. et al. Ultra-high contrast retinal display system for single photoreceptor psychophysics. Biomed. Opt. Express 9 , 157 (2018).

Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6 , 8885 (2015).

Coltheart, M. The assumptions of cognitive neuropsychology: reflections on Caramazza (1984, 1986). Cogn. Neuropsychol. 34 , 397–402 (2017).

Badecker, W. & Caramazza, A. A final brief in the case against agrammatism: the role of theory in the selection of data. Cognition 24 , 277–282 (1986).

Fischer-Baum, S. Making sense of deviance: Identifying dissociating cases within the case series approach. Cogn. Neuropsychol. 30 , 597–617 (2013).

Nickels, L., Howard, D. & Best, W. On the use of different methodologies in cognitive neuropsychology: drink deep and from several sources. Cogn. Neuropsychol. 28 , 475–485 (2011).

Dell, G. S. & Schwartz, M. F. Who’s in and who’s out? Inclusion criteria, model evaluation, and the treatment of exceptions in case series. Cogn. Neuropsychol. 28 , 515–520 (2011).

Schwartz, M. F. & Dell, G. S. Case series investigations in cognitive neuropsychology. Cogn. Neuropsychol. 27 , 477–494 (2010).

Cohen, J. A power primer. Psychol. Bull. 112 , 155–159 (1992).

Martin, R. C. & Allen, C. Case studies in neuropsychology. In APA Handbook Of Research Methods In Psychology Vol. 2 Research Designs: Quantitative, Qualitative, Neuropsychological, And Biological (eds Cooper, H. et al.) 633–646 (American Psychological Association, 2012).

Leivada, E., Westergaard, M., Duñabeitia, J. A. & Rothman, J. On the phantom-like appearance of bilingualism effects on neurocognition: (how) should we proceed? Bilingualism 24 , 197–210 (2021).

Arnett, J. J. The neglected 95%: why American psychology needs to become less American. Am. Psychol. 63 , 602–614 (2008).

Stolz, J. A., Besner, D. & Carr, T. H. Implications of measures of reliability for theories of priming: activity in semantic memory is inherently noisy and uncoordinated. Vis. Cogn. 12 , 284–336 (2005).

Cipora, K. et al. A minority pulls the sample mean: on the individual prevalence of robust group-level cognitive phenomena — the instance of the SNARC effect. Preprint at psyArXiv https://doi.org/10.31234/osf.io/bwyr3 (2019).

Andrews, S., Lo, S. & Xia, V. Individual differences in automatic semantic priming. J. Exp. Psychol. Hum. Percept. Perform. 43 , 1025–1039 (2017).

Tan, L. C. & Yap, M. J. Are individual differences in masked repetition and semantic priming reliable? Vis. Cogn. 24 , 182–200 (2016).

Olsson-Collentine, A., Wicherts, J. M. & van Assen, M. A. L. M. Heterogeneity in direct replications in psychology and its association with effect size. Psychol. Bull. 146 , 922–940 (2020).

Gratton, C. & Braga, R. M. Editorial overview: deep imaging of the individual brain: past, practice, and promise. Curr. Opin. Behav. Sci. 40 , iii–vi (2021).

Fedorenko, E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40 , 105–112 (2021).

Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 125 , 358–384 (2021).

Petit, S. et al. Toward an individualized neural assessment of receptive language in children. J. Speech Lang. Hear. Res. 63 , 2361–2385 (2020).

Jung, K.-H. et al. Heterogeneity of cerebral white matter lesions and clinical correlates in older adults. Stroke 52 , 620–630 (2021).

Falcon, M. I., Jirsa, V. & Solodkin, A. A new neuroinformatics approach to personalized medicine in neurology: the virtual brain. Curr. Opin. Neurol. 29 , 429–436 (2016).

Duncan, G. J., Engel, M., Claessens, A. & Dowsett, C. J. Replication and robustness in developmental research. Dev. Psychol. 50 , 2417–2425 (2014).

Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349 , aac4716 (2015).

Tackett, J. L., Brandes, C. M., King, K. M. & Markon, K. E. Psychology’s replication crisis and clinical psychological science. Annu. Rev. Clin. Psychol. 15 , 579–604 (2019).

Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1 , 0021 (2017).

Oldfield, R. C. & Wingfield, A. The time it takes to name an object. Nature 202 , 1031–1032 (1964).

Oldfield, R. C. & Wingfield, A. Response latencies in naming objects. Q. J. Exp. Psychol. 17 , 273–281 (1965).

Brysbaert, M. How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. J. Cogn. 2 , 16 (2019).

Brysbaert, M. Power considerations in bilingualism research: time to step up our game. Bilingualism https://doi.org/10.1017/S1366728920000437 (2020).

Machery, E. What is a replication? Phil. Sci. 87 , 545–567 (2020).

Nosek, B. A. & Errington, T. M. What is replication? PLoS Biol. 18 , e3000691 (2020).

Li, X., Huang, L., Yao, P. & Hyönä, J. Universal and specific reading mechanisms across different writing systems. Nat. Rev. Psychol. 1 , 133–144 (2022).

Rapp, B. (Ed.) The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (Psychology Press, 2001).

Code, C. et al. Classic Cases In Neuropsychology (Psychology Press, 1996).

Patterson, K., Marshall, J. C. & Coltheart, M. Surface Dyslexia: Neuropsychological And Cognitive Studies Of Phonological Reading (Routledge, 2017).

Marshall, J. C. & Newcombe, F. Patterns of paralexia: a psycholinguistic approach. J. Psycholinguist. Res. 2 , 175–199 (1973).

Castles, A. & Coltheart, M. Varieties of developmental dyslexia. Cognition 47 , 149–180 (1993).

Khentov-Kraus, L. & Friedmann, N. Vowel letter dyslexia. Cogn. Neuropsychol. 35 , 223–270 (2018).

Winskel, H. Orthographic and phonological parafoveal processing of consonants, vowels, and tones when reading Thai. Appl. Psycholinguist. 32 , 739–759 (2011).

Hepner, C., McCloskey, M. & Rapp, B. Do reading and spelling share orthographic representations? Evidence from developmental dysgraphia. Cogn. Neuropsychol. 34 , 119–143 (2017).

Hanley, J. R. & Sotiropoulos, A. Developmental surface dysgraphia without surface dyslexia. Cogn. Neuropsychol. 35 , 333–341 (2018).

Zihl, J. & Heywood, C. A. The contribution of single case studies to the neuroscience of vision: single case studies in vision neuroscience. Psych. J. 5 , 5–17 (2016).

Bouvier, S. E. & Engel, S. A. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16 , 183–191 (2006).

Zihl, J. & Heywood, C. A. The contribution of LM to the neuroscience of movement vision. Front. Integr. Neurosci. 9 , 6 (2015).

Dotan, D. & Friedmann, N. Separate mechanisms for number reading and word reading: evidence from selective impairments. Cortex 114 , 176–192 (2019).

McCloskey, M. & Schubert, T. Shared versus separate processes for letter and digit identification. Cogn. Neuropsychol. 31 , 437–460 (2014).

Fayol, M. & Seron, X. On numerical representations. Insights from experimental, neuropsychological, and developmental research. In Handbook of Mathematical Cognition (ed. Campbell, J.) 3–23 (Psychological Press, 2005).

Bornstein, B. & Kidron, D. P. Prosopagnosia. J. Neurol. Neurosurg. Psychiat. 22 , 124–131 (1959).

Kühn, C. D., Gerlach, C., Andersen, K. B., Poulsen, M. & Starrfelt, R. Face recognition in developmental dyslexia: evidence for dissociation between faces and words. Cogn. Neuropsychol. 38 , 107–115 (2021).

Barton, J. J. S., Albonico, A., Susilo, T., Duchaine, B. & Corrow, S. L. Object recognition in acquired and developmental prosopagnosia. Cogn. Neuropsychol. 36 , 54–84 (2019).

Renault, B., Signoret, J.-L., Debruille, B., Breton, F. & Bolgert, F. Brain potentials reveal covert facial recognition in prosopagnosia. Neuropsychologia 27 , 905–912 (1989).

Bauer, R. M. Autonomic recognition of names and faces in prosopagnosia: a neuropsychological application of the guilty knowledge test. Neuropsychologia 22 , 457–469 (1984).

Haan, E. H. F., de, Young, A. & Newcombe, F. Face recognition without awareness. Cogn. Neuropsychol. 4 , 385–415 (1987).

Ellis, H. D. & Lewis, M. B. Capgras delusion: a window on face recognition. Trends Cogn. Sci. 5 , 149–156 (2001).

Ellis, H. D., Young, A. W., Quayle, A. H. & De Pauw, K. W. Reduced autonomic responses to faces in Capgras delusion. Proc. R. Soc. Lond. B 264 , 1085–1092 (1997).

Collins, M. N., Hawthorne, M. E., Gribbin, N. & Jacobson, R. Capgras’ syndrome with organic disorders. Postgrad. Med. J. 66 , 1064–1067 (1990).

Enoch, D., Puri, B. K. & Ball, H. Uncommon Psychiatric Syndromes 5th edn (Routledge, 2020).

Tranel, D., Damasio, H. & Damasio, A. R. Double dissociation between overt and covert face recognition. J. Cogn. Neurosci. 7 , 425–432 (1995).

Brighetti, G., Bonifacci, P., Borlimi, R. & Ottaviani, C. “Far from the heart far from the eye”: evidence from the Capgras delusion. Cogn. Neuropsychiat. 12 , 189–197 (2007).

Coltheart, M., Langdon, R. & McKay, R. Delusional belief. Annu. Rev. Psychol. 62 , 271–298 (2011).

Coltheart, M. Cognitive neuropsychiatry and delusional belief. Q. J. Exp. Psychol. 60 , 1041–1062 (2007).

Coltheart, M. & Davies, M. How unexpected observations lead to new beliefs: a Peircean pathway. Conscious. Cogn. 87 , 103037 (2021).

Coltheart, M. & Davies, M. Failure of hypothesis evaluation as a factor in delusional belief. Cogn. Neuropsychiat. 26 , 213–230 (2021).

McCloskey, M. et al. A developmental deficit in localizing objects from vision. Psychol. Sci. 6 , 112–117 (1995).

McCloskey, M., Valtonen, J. & Cohen Sherman, J. Representing orientation: a coordinate-system hypothesis and evidence from developmental deficits. Cogn. Neuropsychol. 23 , 680–713 (2006).

McCloskey, M. Spatial representations and multiple-visual-systems hypotheses: evidence from a developmental deficit in visual location and orientation processing. Cortex 40 , 677–694 (2004).

Gregory, E. & McCloskey, M. Mirror-image confusions: implications for representation and processing of object orientation. Cognition 116 , 110–129 (2010).

Gregory, E., Landau, B. & McCloskey, M. Representation of object orientation in children: evidence from mirror-image confusions. Vis. Cogn. 19 , 1035–1062 (2011).

Laine, M. & Martin, N. Cognitive neuropsychology has been, is, and will be significant to aphasiology. Aphasiology 26 , 1362–1376 (2012).

Howard, D. & Patterson, K. The Pyramids And Palm Trees Test: A Test Of Semantic Access From Words And Pictures (Thames Valley Test Co., 1992).

Kay, J., Lesser, R. & Coltheart, M. PALPA: Psycholinguistic Assessments Of Language Processing In Aphasia. 2: Picture & Word Semantics, Sentence Comprehension (Erlbaum, 2001).

Franklin, S. Dissociations in auditory word comprehension; evidence from nine fluent aphasic patients. Aphasiology 3 , 189–207 (1989).

Howard, D., Swinburn, K. & Porter, G. Putting the CAT out: what the comprehensive aphasia test has to offer. Aphasiology 24 , 56–74 (2010).

Conti-Ramsden, G., Crutchley, A. & Botting, N. The extent to which psychometric tests differentiate subgroups of children with SLI. J. Speech Lang. Hear. Res. 40 , 765–777 (1997).

Bishop, D. V. M. & McArthur, G. M. Individual differences in auditory processing in specific language impairment: a follow-up study using event-related potentials and behavioural thresholds. Cortex 41 , 327–341 (2005).

Bishop, D. V. M., Snowling, M. J., Thompson, P. A. & Greenhalgh, T., and the CATALISE-2 consortium. Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: terminology. J. Child. Psychol. Psychiat. 58 , 1068–1080 (2017).

Wilson, A. J. et al. Principles underlying the design of ‘the number race’, an adaptive computer game for remediation of dyscalculia. Behav. Brain Funct. 2 , 19 (2006).

Basso, A. & Marangolo, P. Cognitive neuropsychological rehabilitation: the emperor’s new clothes? Neuropsychol. Rehabil. 10 , 219–229 (2000).

Murad, M. H., Asi, N., Alsawas, M. & Alahdab, F. New evidence pyramid. Evidence-based Med. 21 , 125–127 (2016).

Greenhalgh, T., Howick, J. & Maskrey, N., for the Evidence Based Medicine Renaissance Group. Evidence based medicine: a movement in crisis? Br. Med. J. 348 , g3725–g3725 (2014).

Best, W., Ping Sze, W., Edmundson, A. & Nickels, L. What counts as evidence? Swimming against the tide: valuing both clinically informed experimentally controlled case series and randomized controlled trials in intervention research. Evidence-based Commun. Assess. Interv. 13 , 107–135 (2019).

Best, W. et al. Understanding differing outcomes from semantic and phonological interventions with children with word-finding difficulties: a group and case series study. Cortex 134 , 145–161 (2021).

OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. CEBM https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (2011).

Holler, D. E., Behrmann, M. & Snow, J. C. Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex 119 , 555–568 (2019).

Duchaine, B. C., Yovel, G., Butterworth, E. J. & Nakayama, K. Prosopagnosia as an impairment to face-specific mechanisms: elimination of the alternative hypotheses in a developmental case. Cogn. Neuropsychol. 23 , 714–747 (2006).

Hartley, T. et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus 17 , 34–48 (2007).

Pishnamazi, M. et al. Attentional bias towards and away from fearful faces is modulated by developmental amygdala damage. Cortex 81 , 24–34 (2016).

Rapp, B., Fischer-Baum, S. & Miozzo, M. Modality and morphology: what we write may not be what we say. Psychol. Sci. 26 , 892–902 (2015).

Yong, K. X. X., Warren, J. D., Warrington, E. K. & Crutch, S. J. Intact reading in patients with profound early visual dysfunction. Cortex 49 , 2294–2306 (2013).

Rockland, K. S. & Van Hoesen, G. W. Direct temporal–occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4 , 300–313 (1994).

Haynes, J.-D., Driver, J. & Rees, G. Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46 , 811–821 (2005).

Tanaka, K. Mechanisms of visual object recognition: monkey and human studies. Curr. Opin. Neurobiol. 7 , 523–529 (1997).

Fischer-Baum, S., McCloskey, M. & Rapp, B. Representation of letter position in spelling: evidence from acquired dysgraphia. Cognition 115 , 466–490 (2010).

Houghton, G. The problem of serial order: a neural network model of sequence learning and recall. In Current Research In Natural Language Generation (eds Dale, R., Mellish, C. & Zock, M.) 287–319 (Academic Press, 1990).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. From “some butter” to “a butter”: an investigation of mass and count representation and processing. Cogn. Neuropsychol. 31 , 313–349 (2014).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. How ‘some garlic’ becomes ‘a garlic’ or ‘some onion’: mass and count processing in aphasia. Neuropsychologia 75 , 626–645 (2015).

Schröder, A., Burchert, F. & Stadie, N. Training-induced improvement of noncanonical sentence production does not generalize to comprehension: evidence for modality-specific processes. Cogn. Neuropsychol. 32 , 195–220 (2015).

Stadie, N. et al. Unambiguous generalization effects after treatment of non-canonical sentence production in German agrammatism. Brain Lang. 104 , 211–229 (2008).

Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M. & Turk-Browne, N. B. The necessity of the medial temporal lobe for statistical learning. J. Cogn. Neurosci. 26 , 1736–1747 (2014).

Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22 , 1622–1627 (2012).

Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acaquisition of semantic memory? J. Cogn. Neurosci. 13 , 357–369 (2001).

Snyder, J. J. & Chatterjee, A. Spatial-temporal anisometries following right parietal damage. Neuropsychologia 42 , 1703–1708 (2004).

Ashkenazi, S., Henik, A., Ifergane, G. & Shelef, I. Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex 44 , 439–448 (2008).

Lebrun, M.-A., Moreau, P., McNally-Gagnon, A., Mignault Goulet, G. & Peretz, I. Congenital amusia in childhood: a case study. Cortex 48 , 683–688 (2012).

Vannuscorps, G., Andres, M. & Pillon, A. When does action comprehension need motor involvement? Evidence from upper limb aplasia. Cogn. Neuropsychol. 30 , 253–283 (2013).

Jeannerod, M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14 , S103–S109 (2001).

Blakemore, S.-J. & Decety, J. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2 , 561–567 (2001).

Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27 , 169–192 (2004).

Forde, E. M. E., Humphreys, G. W. & Remoundou, M. Disordered knowledge of action order in action disorganisation syndrome. Neurocase 10 , 19–28 (2004).

Mazzi, C. & Savazzi, S. The glamor of old-style single-case studies in the neuroimaging era: insights from a patient with hemianopia. Front. Psychol. 10 , 965 (2019).

Coltheart, M. What has functional neuroimaging told us about the mind (so far)? (Position Paper Presented to the European Cognitive Neuropsychology Workshop, Bressanone, 2005). Cortex 42 , 323–331 (2006).

Page, M. P. A. What can’t functional neuroimaging tell the cognitive psychologist? Cortex 42 , 428–443 (2006).

Blank, I. A., Kiran, S. & Fedorenko, E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn. Neuropsychol. 34 , 377–393 (2017).

Niv, Y. The primacy of behavioral research for understanding the brain. Behav. Neurosci. 135 , 601–609 (2021).

Crawford, J. R. & Howell, D. C. Comparing an individual’s test score against norms derived from small samples. Clin. Neuropsychol. 12 , 482–486 (1998).

Crawford, J. R., Garthwaite, P. H. & Ryan, K. Comparing a single case to a control sample: testing for neuropsychological deficits and dissociations in the presence of covariates. Cortex 47 , 1166–1178 (2011).

McIntosh, R. D. & Rittmo, J. Ö. Power calculations in single-case neuropsychology: a practical primer. Cortex 135 , 146–158 (2021).

Patterson, K. & Plaut, D. C. “Shallow draughts intoxicate the brain”: lessons from cognitive science for cognitive neuropsychology. Top. Cogn. Sci. 1 , 39–58 (2009).

Lambon Ralph, M. A., Patterson, K. & Plaut, D. C. Finite case series or infinite single-case studies? Comments on “Case series investigations in cognitive neuropsychology” by Schwartz and Dell (2010). Cogn. Neuropsychol. 28 , 466–474 (2011).

Horien, C., Shen, X., Scheinost, D. & Constable, R. T. The individual functional connectome is unique and stable over months to years. NeuroImage 189 , 676–687 (2019).

Epelbaum, S. et al. Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44 , 962–974 (2008).

Fischer-Baum, S. & Campana, G. Neuroplasticity and the logic of cognitive neuropsychology. Cogn. Neuropsychol. 34 , 403–411 (2017).

Paul, S., Baca, E. & Fischer-Baum, S. Cerebellar contributions to orthographic working memory: a single case cognitive neuropsychological investigation. Neuropsychologia 171 , 108242 (2022).

Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21 , 34–38 (2011).

Crawford, J., Garthwaite, P. & Gray, C. Wanted: fully operational definitions of dissociations in single-case studies. Cortex 39 , 357–370 (2003).

McIntosh, R. D. Simple dissociations for a higher-powered neuropsychology. Cortex 103 , 256–265 (2018).

McIntosh, R. D. & Brooks, J. L. Current tests and trends in single-case neuropsychology. Cortex 47 , 1151–1159 (2011).

Best, W., Schröder, A. & Herbert, R. An investigation of a relative impairment in naming non-living items: theoretical and methodological implications. J. Neurolinguistics 19 , 96–123 (2006).

Franklin, S., Howard, D. & Patterson, K. Abstract word anomia. Cogn. Neuropsychol. 12 , 549–566 (1995).

Coltheart, M., Patterson, K. E. & Marshall, J. C. Deep Dyslexia (Routledge, 1980).

Nickels, L., Kohnen, S. & Biedermann, B. An untapped resource: treatment as a tool for revealing the nature of cognitive processes. Cogn. Neuropsychol. 27 , 539–562 (2010).

Download references

Acknowledgements

The authors thank all of those pioneers of and advocates for single case study research who have mentored, inspired and encouraged us over the years, and the many other colleagues with whom we have discussed these issues.

Author information

Authors and affiliations.

School of Psychological Sciences & Macquarie University Centre for Reading, Macquarie University, Sydney, New South Wales, Australia

Lyndsey Nickels

NHMRC Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia

Psychological Sciences, Rice University, Houston, TX, USA

Simon Fischer-Baum

Psychology and Language Sciences, University College London, London, UK

You can also search for this author in PubMed   Google Scholar

Contributions

L.N. led and was primarily responsible for the structuring and writing of the manuscript. All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Lyndsey Nickels .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Psychology thanks Yanchao Bi, Rob McIntosh, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Nickels, L., Fischer-Baum, S. & Best, W. Single case studies are a powerful tool for developing, testing and extending theories. Nat Rev Psychol 1 , 733–747 (2022). https://doi.org/10.1038/s44159-022-00127-y

Download citation

Accepted : 13 October 2022

Published : 22 November 2022

Issue Date : December 2022

DOI : https://doi.org/10.1038/s44159-022-00127-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

single case research designs have been criticized because

The Advantages and Limitations of Single Case Study Analysis

single case research designs have been criticized because

As Andrew Bennett and Colin Elman have recently noted, qualitative research methods presently enjoy “an almost unprecedented popularity and vitality… in the international relations sub-field”, such that they are now “indisputably prominent, if not pre-eminent” (2010: 499). This is, they suggest, due in no small part to the considerable advantages that case study methods in particular have to offer in studying the “complex and relatively unstructured and infrequent phenomena that lie at the heart of the subfield” (Bennett and Elman, 2007: 171). Using selected examples from within the International Relations literature[1], this paper aims to provide a brief overview of the main principles and distinctive advantages and limitations of single case study analysis. Divided into three inter-related sections, the paper therefore begins by first identifying the underlying principles that serve to constitute the case study as a particular research strategy, noting the somewhat contested nature of the approach in ontological, epistemological, and methodological terms. The second part then looks to the principal single case study types and their associated advantages, including those from within the recent ‘third generation’ of qualitative International Relations (IR) research. The final section of the paper then discusses the most commonly articulated limitations of single case studies; while accepting their susceptibility to criticism, it is however suggested that such weaknesses are somewhat exaggerated. The paper concludes that single case study analysis has a great deal to offer as a means of both understanding and explaining contemporary international relations.

The term ‘case study’, John Gerring has suggested, is “a definitional morass… Evidently, researchers have many different things in mind when they talk about case study research” (2006a: 17). It is possible, however, to distil some of the more commonly-agreed principles. One of the most prominent advocates of case study research, Robert Yin (2009: 14) defines it as “an empirical enquiry that investigates a contemporary phenomenon in depth and within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident”. What this definition usefully captures is that case studies are intended – unlike more superficial and generalising methods – to provide a level of detail and understanding, similar to the ethnographer Clifford Geertz’s (1973) notion of ‘thick description’, that allows for the thorough analysis of the complex and particularistic nature of distinct phenomena. Another frequently cited proponent of the approach, Robert Stake, notes that as a form of research the case study “is defined by interest in an individual case, not by the methods of inquiry used”, and that “the object of study is a specific, unique, bounded system” (2008: 443, 445). As such, three key points can be derived from this – respectively concerning issues of ontology, epistemology, and methodology – that are central to the principles of single case study research.

First, the vital notion of ‘boundedness’ when it comes to the particular unit of analysis means that defining principles should incorporate both the synchronic (spatial) and diachronic (temporal) elements of any so-called ‘case’. As Gerring puts it, a case study should be “an intensive study of a single unit… a spatially bounded phenomenon – e.g. a nation-state, revolution, political party, election, or person – observed at a single point in time or over some delimited period of time” (2004: 342). It is important to note, however, that – whereas Gerring refers to a single unit of analysis – it may be that attention also necessarily be given to particular sub-units. This points to the important difference between what Yin refers to as an ‘holistic’ case design, with a single unit of analysis, and an ’embedded’ case design with multiple units of analysis (Yin, 2009: 50-52). The former, for example, would examine only the overall nature of an international organization, whereas the latter would also look to specific departments, programmes, or policies etc.

Secondly, as Tim May notes of the case study approach, “even the most fervent advocates acknowledge that the term has entered into understandings with little specification or discussion of purpose and process” (2011: 220). One of the principal reasons for this, he argues, is the relationship between the use of case studies in social research and the differing epistemological traditions – positivist, interpretivist, and others – within which it has been utilised. Philosophy of science concerns are obviously a complex issue, and beyond the scope of much of this paper. That said, the issue of how it is that we know what we know – of whether or not a single independent reality exists of which we as researchers can seek to provide explanation – does lead us to an important distinction to be made between so-called idiographic and nomothetic case studies (Gerring, 2006b). The former refers to those which purport to explain only a single case, are concerned with particularisation, and hence are typically (although not exclusively) associated with more interpretivist approaches. The latter are those focused studies that reflect upon a larger population and are more concerned with generalisation, as is often so with more positivist approaches[2]. The importance of this distinction, and its relation to the advantages and limitations of single case study analysis, is returned to below.

Thirdly, in methodological terms, given that the case study has often been seen as more of an interpretivist and idiographic tool, it has also been associated with a distinctly qualitative approach (Bryman, 2009: 67-68). However, as Yin notes, case studies can – like all forms of social science research – be exploratory, descriptive, and/or explanatory in nature. It is “a common misconception”, he notes, “that the various research methods should be arrayed hierarchically… many social scientists still deeply believe that case studies are only appropriate for the exploratory phase of an investigation” (Yin, 2009: 6). If case studies can reliably perform any or all three of these roles – and given that their in-depth approach may also require multiple sources of data and the within-case triangulation of methods – then it becomes readily apparent that they should not be limited to only one research paradigm. Exploratory and descriptive studies usually tend toward the qualitative and inductive, whereas explanatory studies are more often quantitative and deductive (David and Sutton, 2011: 165-166). As such, the association of case study analysis with a qualitative approach is a “methodological affinity, not a definitional requirement” (Gerring, 2006a: 36). It is perhaps better to think of case studies as transparadigmatic; it is mistaken to assume single case study analysis to adhere exclusively to a qualitative methodology (or an interpretivist epistemology) even if it – or rather, practitioners of it – may be so inclined. By extension, this also implies that single case study analysis therefore remains an option for a multitude of IR theories and issue areas; it is how this can be put to researchers’ advantage that is the subject of the next section.

Having elucidated the defining principles of the single case study approach, the paper now turns to an overview of its main benefits. As noted above, a lack of consensus still exists within the wider social science literature on the principles and purposes – and by extension the advantages and limitations – of case study research. Given that this paper is directed towards the particular sub-field of International Relations, it suggests Bennett and Elman’s (2010) more discipline-specific understanding of contemporary case study methods as an analytical framework. It begins however, by discussing Harry Eckstein’s seminal (1975) contribution to the potential advantages of the case study approach within the wider social sciences.

Eckstein proposed a taxonomy which usefully identified what he considered to be the five most relevant types of case study. Firstly were so-called configurative-idiographic studies, distinctly interpretivist in orientation and predicated on the assumption that “one cannot attain prediction and control in the natural science sense, but only understanding ( verstehen )… subjective values and modes of cognition are crucial” (1975: 132). Eckstein’s own sceptical view was that any interpreter ‘simply’ considers a body of observations that are not self-explanatory and “without hard rules of interpretation, may discern in them any number of patterns that are more or less equally plausible” (1975: 134). Those of a more post-modernist bent, of course – sharing an “incredulity towards meta-narratives”, in Lyotard’s (1994: xxiv) evocative phrase – would instead suggest that this more free-form approach actually be advantageous in delving into the subtleties and particularities of individual cases.

Eckstein’s four other types of case study, meanwhile, promote a more nomothetic (and positivist) usage. As described, disciplined-configurative studies were essentially about the use of pre-existing general theories, with a case acting “passively, in the main, as a receptacle for putting theories to work” (Eckstein, 1975: 136). As opposed to the opportunity this presented primarily for theory application, Eckstein identified heuristic case studies as explicit theoretical stimulants – thus having instead the intended advantage of theory-building. So-called p lausibility probes entailed preliminary attempts to determine whether initial hypotheses should be considered sound enough to warrant more rigorous and extensive testing. Finally, and perhaps most notably, Eckstein then outlined the idea of crucial case studies , within which he also included the idea of ‘most-likely’ and ‘least-likely’ cases; the essential characteristic of crucial cases being their specific theory-testing function.

Whilst Eckstein’s was an early contribution to refining the case study approach, Yin’s (2009: 47-52) more recent delineation of possible single case designs similarly assigns them roles in the applying, testing, or building of theory, as well as in the study of unique cases[3]. As a subset of the latter, however, Jack Levy (2008) notes that the advantages of idiographic cases are actually twofold. Firstly, as inductive/descriptive cases – akin to Eckstein’s configurative-idiographic cases – whereby they are highly descriptive, lacking in an explicit theoretical framework and therefore taking the form of “total history”. Secondly, they can operate as theory-guided case studies, but ones that seek only to explain or interpret a single historical episode rather than generalise beyond the case. Not only does this therefore incorporate ‘single-outcome’ studies concerned with establishing causal inference (Gerring, 2006b), it also provides room for the more postmodern approaches within IR theory, such as discourse analysis, that may have developed a distinct methodology but do not seek traditional social scientific forms of explanation.

Applying specifically to the state of the field in contemporary IR, Bennett and Elman identify a ‘third generation’ of mainstream qualitative scholars – rooted in a pragmatic scientific realist epistemology and advocating a pluralistic approach to methodology – that have, over the last fifteen years, “revised or added to essentially every aspect of traditional case study research methods” (2010: 502). They identify ‘process tracing’ as having emerged from this as a central method of within-case analysis. As Bennett and Checkel observe, this carries the advantage of offering a methodologically rigorous “analysis of evidence on processes, sequences, and conjunctures of events within a case, for the purposes of either developing or testing hypotheses about causal mechanisms that might causally explain the case” (2012: 10).

Harnessing various methods, process tracing may entail the inductive use of evidence from within a case to develop explanatory hypotheses, and deductive examination of the observable implications of hypothesised causal mechanisms to test their explanatory capability[4]. It involves providing not only a coherent explanation of the key sequential steps in a hypothesised process, but also sensitivity to alternative explanations as well as potential biases in the available evidence (Bennett and Elman 2010: 503-504). John Owen (1994), for example, demonstrates the advantages of process tracing in analysing whether the causal factors underpinning democratic peace theory are – as liberalism suggests – not epiphenomenal, but variously normative, institutional, or some given combination of the two or other unexplained mechanism inherent to liberal states. Within-case process tracing has also been identified as advantageous in addressing the complexity of path-dependent explanations and critical junctures – as for example with the development of political regime types – and their constituent elements of causal possibility, contingency, closure, and constraint (Bennett and Elman, 2006b).

Bennett and Elman (2010: 505-506) also identify the advantages of single case studies that are implicitly comparative: deviant, most-likely, least-likely, and crucial cases. Of these, so-called deviant cases are those whose outcome does not fit with prior theoretical expectations or wider empirical patterns – again, the use of inductive process tracing has the advantage of potentially generating new hypotheses from these, either particular to that individual case or potentially generalisable to a broader population. A classic example here is that of post-independence India as an outlier to the standard modernisation theory of democratisation, which holds that higher levels of socio-economic development are typically required for the transition to, and consolidation of, democratic rule (Lipset, 1959; Diamond, 1992). Absent these factors, MacMillan’s single case study analysis (2008) suggests the particularistic importance of the British colonial heritage, the ideology and leadership of the Indian National Congress, and the size and heterogeneity of the federal state.

Most-likely cases, as per Eckstein above, are those in which a theory is to be considered likely to provide a good explanation if it is to have any application at all, whereas least-likely cases are ‘tough test’ ones in which the posited theory is unlikely to provide good explanation (Bennett and Elman, 2010: 505). Levy (2008) neatly refers to the inferential logic of the least-likely case as the ‘Sinatra inference’ – if a theory can make it here, it can make it anywhere. Conversely, if a theory cannot pass a most-likely case, it is seriously impugned. Single case analysis can therefore be valuable for the testing of theoretical propositions, provided that predictions are relatively precise and measurement error is low (Levy, 2008: 12-13). As Gerring rightly observes of this potential for falsification:

“a positivist orientation toward the work of social science militates toward a greater appreciation of the case study format, not a denigration of that format, as is usually supposed” (Gerring, 2007: 247, emphasis added).

In summary, the various forms of single case study analysis can – through the application of multiple qualitative and/or quantitative research methods – provide a nuanced, empirically-rich, holistic account of specific phenomena. This may be particularly appropriate for those phenomena that are simply less amenable to more superficial measures and tests (or indeed any substantive form of quantification) as well as those for which our reasons for understanding and/or explaining them are irreducibly subjective – as, for example, with many of the normative and ethical issues associated with the practice of international relations. From various epistemological and analytical standpoints, single case study analysis can incorporate both idiographic sui generis cases and, where the potential for generalisation may exist, nomothetic case studies suitable for the testing and building of causal hypotheses. Finally, it should not be ignored that a signal advantage of the case study – with particular relevance to international relations – also exists at a more practical rather than theoretical level. This is, as Eckstein noted, “that it is economical for all resources: money, manpower, time, effort… especially important, of course, if studies are inherently costly, as they are if units are complex collective individuals ” (1975: 149-150, emphasis added).

Limitations

Single case study analysis has, however, been subject to a number of criticisms, the most common of which concern the inter-related issues of methodological rigour, researcher subjectivity, and external validity. With regard to the first point, the prototypical view here is that of Zeev Maoz (2002: 164-165), who suggests that “the use of the case study absolves the author from any kind of methodological considerations. Case studies have become in many cases a synonym for freeform research where anything goes”. The absence of systematic procedures for case study research is something that Yin (2009: 14-15) sees as traditionally the greatest concern due to a relative absence of methodological guidelines. As the previous section suggests, this critique seems somewhat unfair; many contemporary case study practitioners – and representing various strands of IR theory – have increasingly sought to clarify and develop their methodological techniques and epistemological grounding (Bennett and Elman, 2010: 499-500).

A second issue, again also incorporating issues of construct validity, concerns that of the reliability and replicability of various forms of single case study analysis. This is usually tied to a broader critique of qualitative research methods as a whole. However, whereas the latter obviously tend toward an explicitly-acknowledged interpretive basis for meanings, reasons, and understandings:

“quantitative measures appear objective, but only so long as we don’t ask questions about where and how the data were produced… pure objectivity is not a meaningful concept if the goal is to measure intangibles [as] these concepts only exist because we can interpret them” (Berg and Lune, 2010: 340).

The question of researcher subjectivity is a valid one, and it may be intended only as a methodological critique of what are obviously less formalised and researcher-independent methods (Verschuren, 2003). Owen (1994) and Layne’s (1994) contradictory process tracing results of interdemocratic war-avoidance during the Anglo-American crisis of 1861 to 1863 – from liberal and realist standpoints respectively – are a useful example. However, it does also rest on certain assumptions that can raise deeper and potentially irreconcilable ontological and epistemological issues. There are, regardless, plenty such as Bent Flyvbjerg (2006: 237) who suggest that the case study contains no greater bias toward verification than other methods of inquiry, and that “on the contrary, experience indicates that the case study contains a greater bias toward falsification of preconceived notions than toward verification”.

The third and arguably most prominent critique of single case study analysis is the issue of external validity or generalisability. How is it that one case can reliably offer anything beyond the particular? “We always do better (or, in the extreme, no worse) with more observation as the basis of our generalization”, as King et al write; “in all social science research and all prediction, it is important that we be as explicit as possible about the degree of uncertainty that accompanies out prediction” (1994: 212). This is an unavoidably valid criticism. It may be that theories which pass a single crucial case study test, for example, require rare antecedent conditions and therefore actually have little explanatory range. These conditions may emerge more clearly, as Van Evera (1997: 51-54) notes, from large-N studies in which cases that lack them present themselves as outliers exhibiting a theory’s cause but without its predicted outcome. As with the case of Indian democratisation above, it would logically be preferable to conduct large-N analysis beforehand to identify that state’s non-representative nature in relation to the broader population.

There are, however, three important qualifiers to the argument about generalisation that deserve particular mention here. The first is that with regard to an idiographic single-outcome case study, as Eckstein notes, the criticism is “mitigated by the fact that its capability to do so [is] never claimed by its exponents; in fact it is often explicitly repudiated” (1975: 134). Criticism of generalisability is of little relevance when the intention is one of particularisation. A second qualifier relates to the difference between statistical and analytical generalisation; single case studies are clearly less appropriate for the former but arguably retain significant utility for the latter – the difference also between explanatory and exploratory, or theory-testing and theory-building, as discussed above. As Gerring puts it, “theory confirmation/disconfirmation is not the case study’s strong suit” (2004: 350). A third qualification relates to the issue of case selection. As Seawright and Gerring (2008) note, the generalisability of case studies can be increased by the strategic selection of cases. Representative or random samples may not be the most appropriate, given that they may not provide the richest insight (or indeed, that a random and unknown deviant case may appear). Instead, and properly used , atypical or extreme cases “often reveal more information because they activate more actors… and more basic mechanisms in the situation studied” (Flyvbjerg, 2006). Of course, this also points to the very serious limitation, as hinted at with the case of India above, that poor case selection may alternatively lead to overgeneralisation and/or grievous misunderstandings of the relationship between variables or processes (Bennett and Elman, 2006a: 460-463).

As Tim May (2011: 226) notes, “the goal for many proponents of case studies […] is to overcome dichotomies between generalizing and particularizing, quantitative and qualitative, deductive and inductive techniques”. Research aims should drive methodological choices, rather than narrow and dogmatic preconceived approaches. As demonstrated above, there are various advantages to both idiographic and nomothetic single case study analyses – notably the empirically-rich, context-specific, holistic accounts that they have to offer, and their contribution to theory-building and, to a lesser extent, that of theory-testing. Furthermore, while they do possess clear limitations, any research method involves necessary trade-offs; the inherent weaknesses of any one method, however, can potentially be offset by situating them within a broader, pluralistic mixed-method research strategy. Whether or not single case studies are used in this fashion, they clearly have a great deal to offer.

References 

Bennett, A. and Checkel, J. T. (2012) ‘Process Tracing: From Philosophical Roots to Best Practice’, Simons Papers in Security and Development, No. 21/2012, School for International Studies, Simon Fraser University: Vancouver.

Bennett, A. and Elman, C. (2006a) ‘Qualitative Research: Recent Developments in Case Study Methods’, Annual Review of Political Science , 9, 455-476.

Bennett, A. and Elman, C. (2006b) ‘Complex Causal Relations and Case Study Methods: The Example of Path Dependence’, Political Analysis , 14, 3, 250-267.

Bennett, A. and Elman, C. (2007) ‘Case Study Methods in the International Relations Subfield’, Comparative Political Studies , 40, 2, 170-195.

Bennett, A. and Elman, C. (2010) Case Study Methods. In C. Reus-Smit and D. Snidal (eds) The Oxford Handbook of International Relations . Oxford University Press: Oxford. Ch. 29.

Berg, B. and Lune, H. (2012) Qualitative Research Methods for the Social Sciences . Pearson: London.

Bryman, A. (2012) Social Research Methods . Oxford University Press: Oxford.

David, M. and Sutton, C. D. (2011) Social Research: An Introduction . SAGE Publications Ltd: London.

Diamond, J. (1992) ‘Economic development and democracy reconsidered’, American Behavioral Scientist , 35, 4/5, 450-499.

Eckstein, H. (1975) Case Study and Theory in Political Science. In R. Gomm, M. Hammersley, and P. Foster (eds) Case Study Method . SAGE Publications Ltd: London.

Flyvbjerg, B. (2006) ‘Five Misunderstandings About Case-Study Research’, Qualitative Inquiry , 12, 2, 219-245.

Geertz, C. (1973) The Interpretation of Cultures: Selected Essays by Clifford Geertz . Basic Books Inc: New York.

Gerring, J. (2004) ‘What is a Case Study and What Is It Good for?’, American Political Science Review , 98, 2, 341-354.

Gerring, J. (2006a) Case Study Research: Principles and Practices . Cambridge University Press: Cambridge.

Gerring, J. (2006b) ‘Single-Outcome Studies: A Methodological Primer’, International Sociology , 21, 5, 707-734.

Gerring, J. (2007) ‘Is There a (Viable) Crucial-Case Method?’, Comparative Political Studies , 40, 3, 231-253.

King, G., Keohane, R. O. and Verba, S. (1994) Designing Social Inquiry: Scientific Inference in Qualitative Research . Princeton University Press: Chichester.

Layne, C. (1994) ‘Kant or Cant: The Myth of the Democratic Peace’, International Security , 19, 2, 5-49.

Levy, J. S. (2008) ‘Case Studies: Types, Designs, and Logics of Inference’, Conflict Management and Peace Science , 25, 1-18.

Lipset, S. M. (1959) ‘Some Social Requisites of Democracy: Economic Development and Political Legitimacy’, The American Political Science Review , 53, 1, 69-105.

Lyotard, J-F. (1984) The Postmodern Condition: A Report on Knowledge . University of Minnesota Press: Minneapolis.

MacMillan, A. (2008) ‘Deviant Democratization in India’, Democratization , 15, 4, 733-749.

Maoz, Z. (2002) Case study methodology in international studies: from storytelling to hypothesis testing. In F. P. Harvey and M. Brecher (eds) Evaluating Methodology in International Studies . University of Michigan Press: Ann Arbor.

May, T. (2011) Social Research: Issues, Methods and Process . Open University Press: Maidenhead.

Owen, J. M. (1994) ‘How Liberalism Produces Democratic Peace’, International Security , 19, 2, 87-125.

Seawright, J. and Gerring, J. (2008) ‘Case Selection Techniques in Case Study Research: A Menu of Qualitative and Quantitative Options’, Political Research Quarterly , 61, 2, 294-308.

Stake, R. E. (2008) Qualitative Case Studies. In N. K. Denzin and Y. S. Lincoln (eds) Strategies of Qualitative Inquiry . Sage Publications: Los Angeles. Ch. 17.

Van Evera, S. (1997) Guide to Methods for Students of Political Science . Cornell University Press: Ithaca.

Verschuren, P. J. M. (2003) ‘Case study as a research strategy: some ambiguities and opportunities’, International Journal of Social Research Methodology , 6, 2, 121-139.

Yin, R. K. (2009) Case Study Research: Design and Methods . SAGE Publications Ltd: London.

[1] The paper follows convention by differentiating between ‘International Relations’ as the academic discipline and ‘international relations’ as the subject of study.

[2] There is some similarity here with Stake’s (2008: 445-447) notion of intrinsic cases, those undertaken for a better understanding of the particular case, and instrumental ones that provide insight for the purposes of a wider external interest.

[3] These may be unique in the idiographic sense, or in nomothetic terms as an exception to the generalising suppositions of either probabilistic or deterministic theories (as per deviant cases, below).

[4] Although there are “philosophical hurdles to mount”, according to Bennett and Checkel, there exists no a priori reason as to why process tracing (as typically grounded in scientific realism) is fundamentally incompatible with various strands of positivism or interpretivism (2012: 18-19). By extension, it can therefore be incorporated by a range of contemporary mainstream IR theories.

— Written by: Ben Willis Written at: University of Plymouth Written for: David Brockington Date written: January 2013

Further Reading on E-International Relations

  • Identity in International Conflicts: A Case Study of the Cuban Missile Crisis
  • Imperialism’s Legacy in the Study of Contemporary Politics: The Case of Hegemonic Stability Theory
  • Recreating a Nation’s Identity Through Symbolism: A Chinese Case Study
  • Ontological Insecurity: A Case Study on Israeli-Palestinian Conflict in Jerusalem
  • Terrorists or Freedom Fighters: A Case Study of ETA
  • A Critical Assessment of Eco-Marxism: A Ghanaian Case Study

Please Consider Donating

Before you download your free e-book, please consider donating to support open access publishing.

E-IR is an independent non-profit publisher run by an all volunteer team. Your donations allow us to invest in new open access titles and pay our bandwidth bills to ensure we keep our existing titles free to view. Any amount, in any currency, is appreciated. Many thanks!

Donations are voluntary and not required to download the e-book - your link to download is below.

single case research designs have been criticized because

A Primer on Single-Case Research Designs: Contemporary Use and Analysis

Affiliation.

  • 1 Jennifer R. Ledford, Erin E. Barton, Katherine E. Severini, and Kathleen N. Zimmerman, Vanderbilt University.
  • PMID: 30715924
  • DOI: 10.1352/1944-7558-124.1.35

The overarching purpose of this article is to provide an introduction to the use of rigorous single-case research designs (SCRDs) in special education and related fields. Authors first discuss basic design types and research questions that can be answered with SCRDs, examine threats to internal validity and potential ways to control for and detect common threats, and provide guidelines for selection of specific designs. Following, contemporary standards regarding rigor, measurement, description, and outcomes are presented. Then, authors discuss data analytic techniques, differentiating rigor, positive outcomes, functional relations, and magnitude of effects.

Publication types

  • Case-Control Studies*
  • Education, Special
  • Reproducibility of Results
  • Research Design* / standards
  • Treatment Outcome

Book cover

Handbook of Research Methods in Health Social Sciences pp 581–602 Cite as

Single-Case Designs

  • Breanne Byiers 2  
  • Reference work entry
  • First Online: 13 January 2019

675 Accesses

2 Citations

Single-case designs (also called single-case experimental designs) are system of research design strategies that can provide strong evidence of intervention effectiveness by using repeated measurement to establish each participant (or case) as his or her own control. The flexibility of the designs, and the focus on the individual as the unit of measurement, has led to an increased interest in the use of single-case design research in many areas of intervention research. The purpose of this chapter is to introduce the reader to the basic logic underlying the conduct and analysis of single-case design research by describing the fundamental features of this type of research, providing examples of several commonly used designs, and reviewing the guidelines for the visual analysis of single-case study data. Additionally, current areas of consensus and disagreement in the field of single-case design research will be discussed.

  • Single-case designs
  • Single-subject designs
  • Small-N research
  • Intervention research
  • Idiographic research
  • Operant psychology

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Ahearn WH, Kerwin ML, Eicher PS, Shantz J, Swearingin W. An alternating treatments comparison of two intensive interventions for food refusal. J Appl Behav Anal. 1996:29(3):321–32.

Article   Google Scholar  

Allison DB, Franklin RD, Heshka S. Reflections on visual inspection, response guided experimentation, and type I error rate in single-case designs. J Exp Educ. 1992;61(1):45–51.

Baer DM. Perhaps it would be better not to know everything. J Appl Behav Anal. 1977;10:167–72.

Baer DM, Wolf MM, Risley TR. Some current dimensions of applied behavior analysis. J Appl Behav Anal. 1968;1:91–7.

Barlow DH, Hayes SC. Alternating treatments design: one strategy for comparing the effects of two treatments in a single subject. J Appl Behav Anal. 1979;12(2):199–210.

Barlow DH, Nock M, Hersen M. Single-case experimental designs. 3rd ed. 2009.

Google Scholar  

Barrish HH, Saunders M, Wolf MM. Good behavior game: effects of individual contingencies for group consequences on disruptive behavior in a classroom. J Appl Behav Anal. 1969;2:119–24.

Brownell KD, Stunkard AJ, Albaum JM. Evaluation and modification of exercise patterns in the natural environment. Am J Psychiatr. 1980;137:1540–5.

Byun TM, Hitchcock ER, Ferron J. Masked visual analysis: minimizing type I error in visually guided single-case design for communication disorder. J Speech Lang Hear Res. 2017;60: 1455–66.

Colvin G, Sugai G, Good RJ, Lee YY. Using active supervision and pre-correction to improve transition behaviors in an elementary school. Sch Psychol Q. 1997;12:344–63.

Dallery J, Cassidy RN, Raiff BR. Single-case experimental designs to evaluate novel technology-based health interventions. J Med Internet Res. 2013;15:e22.

Dugard P, File P, Todman J. Single-case and small-n experimental designs: a practical guide to randomization tests. New York: Routledge; 2012.

Book   Google Scholar  

Ferron J, Ware W. Using randomization tests with responsive single-case designs. Behav Res Ther. 1994;32:787–91.

Fisch GS. Evaluating data from behavioral analysis: visual inspection or statistical models? Behav Process. 2001;54:137–54.

Gast DL, Ledford J. Single case research methodology. 2nd ed. New York: Routledge; 2014.

Hersen M, Bellack AS. A multiple-baseline analysis of social-skills training in chronic schizophrenics. J Appl Behav Anal. 1976;9(3):239–45.

Higgins Hains AH, Baer DM. Interaction effects in multielement designs: inevitable, desirable, and ignorable. J Appl Behav Anal. 1989;22:57–69.

Horner RD, Baer DM. Multiple-probe technique: a variation of the multiple baseline. J Appl Behav Anal. 1978;11:189–96.

Horner RH, Carr EG, Halle J, McGee G, Odom S, Wolery M. The use of single subject research to identify evidence-based practice in special education. Except Child. 2005;71:165–79.

Horner RH, Swaminathan H, Sugai G, Smolkowski K. Considerations for the systematic analysis and use of single-case research. Educ Treat Child. 2012;35(2):269–90.

Jones RR, Weinrott MR, Vaught RS. Effects of serial dependency on the agreement between visual and statistical inference. J Appl Behav Anal. 1978;11:277–83.

Kazdin AE. Single-case experimental designs: methods for clinical and applied settings. New York: Oxford University Press; 1982.

Kazdin AE. Single-case research designs: methods for clinical and applied settings. New York: Oxford University Press; 2011.

Kratochwill TR, Hitchcock J, Horner RH, Levin JR, Odom SL, Rindskopf DM, Shadish WR. Single-case designs technical documentation. 2010. Retrieved from What Works Clearinghouse website: http://ies.ed.gov/ncee/wwc/pdf/wwc_scd.pdf .

Kratochwill TR, Levin JR. Enhancing the scientific credibility of single-case intervention research: randomization to the rescue. In: Kratochwill TR, Levin JR, editors. Single-case intervention research: methodological and statistical advances. Washington, DC: American Psychological Association; 2014. p. 53–90.

Chapter   Google Scholar  

Ledford JR, Gast DL. Measuring procedural fidelity in behavioural research. Neuropsychol Rehabil. 2014;24:332–48.

Manolov R, Gast DL, Perdices M, Evans JJ. Single-case experimental designs: reflections on conduct and analysis. Neuropsychol Rehabil. 2014;24(3–4):634.

Matyas TA, Greenwood KM. Visual analysis of single-case time series: effects of variability, serial dependence, and magnitude of intervention effects. J Appl Behav Anal. 1990;23:341–51.

Morgan DL, Morgan RK. Comparing group and single-case designs. In: Morgan DL, Morgan RK, editors. Single-case research methods for the behavioral and health sciences. Thousand Oaks: SAGE; 2014.

Parsonson BS, Baer DM. The analysis and presentation of graphic data. In: Kratochwill T, editor. Single subject research. New York: Academic; 1978. p. 101–66.

Parsonson BS, Baer DM. The visual analysis of data, and current research into stimuli controlling it. In: Kratochwill TR, Levin JR, editors. Single-case research design and analysis: new directions for psychology and education. Hillsdale: Lawrence Erlbaum Associates; 1992. p. 15–40.

Putnam RF, Handler MW, Ramirez-Platt CM, Luiselli JK. Improving student bus-riding behavior through a whole-school intervention. J Appl Behav Anal. 2003;36:583–90.

Rose M. Single-subject experimental designs in health research. In: Liamputtong P, editor. Research methods in health: foundations for evidence-based practice. Melbourne: Oxford University Press; 2017. p. 217–34.

Schlosser RW, Blischak DM. Effects of speech and print feedback on spelling by children with autism. J Speech Lang Hear Res. 2004;47(4):848.

Shadish WR, Cook TD, Campbell DT. Experimental and quasi-experimental designs for generalized causal inference. Boston: Houghton Mifflin; 2002.

Sidman M. Tactics of scientific research. Boston: Authors Cooperative, Inc; 1960.

Sindelar P, Rosenberg M, Wilson R. An adapted alternating treatments design for instructional research. Educ Treat Child. 1985;8(1):67–76.

Smith JD. Single-case experimental designs: a systematic review of published research and current standards. Psychol Methods. 2012;17:510–50.

Stark LJ, Bowen AM, Tyc VL, Evans S, Passero MA. A behavioral approach to increasing calorie consumption in children with cystic fibrosis. J Pediatr Psychol. 1990;15:309–26.

Wolery M. Procedural fidelity: a reminder of its functions. J Behav Educ. 1994;4:381–6.

Download references

Author information

Authors and affiliations.

Department of Educational Psychology, University of Minnesota, Minneapolis, MN, USA

Breanne Byiers

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Breanne Byiers .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Byiers, B. (2019). Single-Case Designs. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_92

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_92

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. single case intervention research design standards

    single case research designs have been criticized because

  2. Single-Case Research Designs: Methods for Clinical and Applied Settings

    single case research designs have been criticized because

  3. single subject research design recommendations for levels of evidence

    single case research designs have been criticized because

  4. Single-Case Research Designs: Methods for Clinical and Applied Settings

    single case research designs have been criticized because

  5. Mixed Methods Single Case Research: State of the Art and Future

    single case research designs have been criticized because

  6. PPT

    single case research designs have been criticized because

VIDEO

  1. Building Effective Product Proof of Concept and Case Studies

  2. Change Research

  3. Continuation on Research Design

COMMENTS

  1. Single-Case Experimental Designs: A Systematic Review of Published

    The single-case experiment has a storied history in psychology dating back to the field's founders: Fechner (1889), Watson (1925), and Skinner (1938).It has been used to inform and develop theory, examine interpersonal processes, study the behavior of organisms, establish the effectiveness of psychological interventions, and address a host of other research questions (for a review, see ...

  2. Single-case experimental designs: Characteristics, changes, and

    Research Design* Tactics of Scientific Research (Sidman, 1960) provides a visionary treatise on single-case designs, their scientific underpinnings, and their critical role in understanding behavior. Since the foundational base was provided, single-case designs have proliferated especially in areas of application wh …

  3. Single Case Research Design

    Michael Blankenagel Chapter First Online: 10 November 2021 3447 Accesses 2 Citations Abstract This chapter addresses the peculiarities, characteristics, and major fallacies of single case research designs. A single case study research design is a collective term for an in-depth analysis of a small non-random sample.

  4. A systematic review of applied single-case research ...

    Single-case experimental designs (SCEDs) have become a popular research methodology in educational science, psychology, and beyond. The growing popularity has been accompanied by the development of specific guidelines for the conduct and analysis of SCEDs. In this paper, we examine recent practices in the conduct and analysis of SCEDs by systematically reviewing applied SCEDs published over a ...

  5. Single-case experimental designs. Evaluating interventions in research

    Single-case experimental designs have been used extensively with a variety of clinical populations and in a wide range of in-patient, outpatient, school, business, and community settings (Kazdin, 2011; Kratochwill & Levin, 2014).). "Single-case" can mislead because the designs are not necessarily restricted to the single case, that is, one individual.

  6. Single-Case Design, Analysis, and Quality Assessment for Intervention

    Single-case studies can provide a viable alternative to large group studies such as randomized clinical trials. Single case studies involve repeated measures, and manipulation of and independent variable. They can be designed to have strong internal validity for assessing causal relationships between interventions and outcomes, and external ...

  7. Single‐case experimental designs: Characteristics, changes, and challenges

    ... In single-subject research design, the degree of experimental control is evaluated by examining the trend, level, and variability of the data (Kazdin, 2021). These considerations are made...

  8. Single-case experimental designs: A systematic review of published

    This article systematically reviews the research design and methodological characteristics of single-case experimental design (SCED) research published in peer-reviewed journals between 2000 and 2010. SCEDs provide researchers with a flexible and viable alternative to group designs with large sample sizes. However, methodological challenges have precluded widespread implementation and ...

  9. Single‐case experimental designs: Characteristics, changes, and

    Alan E. Kazdin First published: 18 November 2020 https://doi.org/10.1002/jeab.638 Citations: 36 Read the full text PDF Tools Share Abstract Tactics of Scientific Research (Sidman, 1960) provides a visionary treatise on single-case designs, their scientific underpinnings, and their critical role in understanding behavior.

  10. Single case studies are a powerful tool for developing ...

    Psychology embraces a diverse range of methodologies. However, most rely on averaging group data to draw conclusions. In this Perspective, we argue that single case methodology is a valuable tool ...

  11. Single Case Research Design

    First Online: 04 January 2024 120 Accesses Abstract This chapter addresses single-case research designs' peculiarities, characteristics, and significant fallacies. A single case research design is a collective term for an in-depth analysis of a small non-random sample. The focus of this design is in-depth.

  12. The Advantages and Limitations of Single Case Study Analysis

    This points to the important difference between what Yin refers to as an 'holistic' case design, with a single unit of analysis, and an 'embedded' case design with multiple units of analysis (Yin, 2009: 50-52). ... Single case study analysis has, however, been subject to a number of criticisms, the most common of which concern the inter ...

  13. From Boulder to Stockholm in 70 Years: Single Case Experimental Designs

    Because well-designed single-case studies have the potential to provide Level 1 evidence, poorly designed and poorly reported studies miss the opportunity to furnish such a high level of evidence. ... There have been few available resources to guide teachers in setting up and ... Single-case research designs in clinical child psychiatry ...

  14. Between‐case standardized mean difference effect sizes for single‐case

    Standardized mean difference effect sizes for single-case designs: a primer and tutorial using R. Single-case research designs (also referred to as "single subject designs", "single-case experimental designs", and "n-of-1 trials"; henceforth, SCRDs) have been used to assess intervention effects for many decades (Barlow & Hayes, 1979; Herson & Barlow, 1976).

  15. A Primer on Single-Case Research Designs: Contemporary Use and ...

    Abstract. The overarching purpose of this article is to provide an introduction to the use of rigorous single-case research designs (SCRDs) in special education and related fields. Authors first discuss basic design types and research questions that can be answered with SCRDs, examine threats to internal validity and potential ways to control ...

  16. Single-case intervention research design standards: Additional proposed

    Examples of this design are less frequent and only recently have begun to appear in the SCD applied research literature in the form of single-case crossover designs (e.g., de Jong et al., 2008; Hwang et al., 2016) and two independent-samples replicated AB designs (e.g., Hwang & Levin, 2022).

  17. The Family of Single-Case Experimental Designs

    Abstract. Single-case experimental designs (SCEDs) represent a family of research designs that use experimental methods to study the effects of treatments on outcomes. The fundamental unit of analysis is the single case—which can be an individual, clinic, or community—ideally with replications of effects within and/or between cases.

  18. Single-Case Research Design

    Single-Case Research Designs. Although usually labeled a quasi-experimental time-series design, single-case research designs are described in this article as a separate form of research design (formerly termed single-subject or N = 1 research) that have a long and influential history in psychology and education (e.g., Kratochwill, 1978; Levin ...

  19. Generality of Findings From Single-Case Designs: It's Not ...

    Due to behavior-analytic practitioners' necessary reliance on the line of research in informing practice, it is important that they have a clear understanding of the logic that supports generalizations from single-case designs. Knowledge of Sidman's () replication framework and its role in a line of research can give practitioners a comprehensive understanding of how environmental and ...

  20. Solved 23. Single-subject research designs have been

    Single-subject research designs have been criticized because a. researchers often test complicated interactions among variables. b. some participants do not receive treatment c. the external validity of the findings may be limited. d. all of these Show transcribed image text Here's the best way to solve it. Expert-verified

  21. Solved QUESTION 36Single-case research designs have been

    Question: QUESTION 36Single-case research designs have been criticized because researchers often test complicated interactions among variables.the external validity of the findings may be limited.participants in the control condition do not receive treatment.all of these

  22. PDF 8 Single Case Research Design

    142 8 Single Case Research Design. 8.1 General Description of Single Case Research Design. Case study research is a collective term for an in-depth analysis of a small non-ran-dom sample. The focus is on in-depth. This characteristic distinguishes the case study research from other research designs that consider the individual case as a rather ...

  23. Single-Case Designs

    Single-case designs (also called single-case experimental designs) are system of research design strategies that can provide strong evidence of intervention effectiveness by using repeated measurement to establish each participant (or case) as his or her own control. The flexibility of the designs, and the focus on the individual as the unit of ...